Evaluate
\frac{26600}{3}\approx 8866.666666667
Factor
\frac{2 ^ {3} \cdot 5 ^ {2} \cdot 7 \cdot 19}{3} = 8866\frac{2}{3} = 8866.666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)106400}\\\end{array}
Use the 1^{st} digit 1 from dividend 106400
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)106400}\\\end{array}
Since 1 is less than 12, use the next digit 0 from dividend 106400 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)106400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 106400
\begin{array}{l}\phantom{12)}00\phantom{4}\\12\overline{)106400}\\\end{array}
Since 10 is less than 12, use the next digit 6 from dividend 106400 and add 0 to the quotient
\begin{array}{l}\phantom{12)}00\phantom{5}\\12\overline{)106400}\\\end{array}
Use the 3^{rd} digit 6 from dividend 106400
\begin{array}{l}\phantom{12)}008\phantom{6}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}10\\\end{array}
Find closest multiple of 12 to 106. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 106 to get reminder 10. Add 8 to quotient.
\begin{array}{l}\phantom{12)}008\phantom{7}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\end{array}
Use the 4^{th} digit 4 from dividend 106400
\begin{array}{l}\phantom{12)}0088\phantom{8}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\phantom{12)}\underline{\phantom{99}96\phantom{99}}\\\phantom{12)999}8\\\end{array}
Find closest multiple of 12 to 104. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 104 to get reminder 8. Add 8 to quotient.
\begin{array}{l}\phantom{12)}0088\phantom{9}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\phantom{12)}\underline{\phantom{99}96\phantom{99}}\\\phantom{12)999}80\\\end{array}
Use the 5^{th} digit 0 from dividend 106400
\begin{array}{l}\phantom{12)}00886\phantom{10}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\phantom{12)}\underline{\phantom{99}96\phantom{99}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{9}}\\\phantom{12)9999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}00886\phantom{11}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\phantom{12)}\underline{\phantom{99}96\phantom{99}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{9}}\\\phantom{12)9999}80\\\end{array}
Use the 6^{th} digit 0 from dividend 106400
\begin{array}{l}\phantom{12)}008866\phantom{12}\\12\overline{)106400}\\\phantom{12)}\underline{\phantom{9}96\phantom{999}}\\\phantom{12)9}104\\\phantom{12)}\underline{\phantom{99}96\phantom{99}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{9}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{}}\\\phantom{12)99999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\text{Quotient: }8866 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 008866 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8866.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}