Evaluate
\frac{2497}{3}\approx 832.333333333
Factor
\frac{11 \cdot 227}{3} = 832\frac{1}{3} = 832.3333333333334
Share
Copied to clipboard
1155-11^{2}-\frac{11^{3}}{3}+2\times 11^{2}
Multiply 105 and 11 to get 1155.
1155-121-\frac{11^{3}}{3}+2\times 11^{2}
Calculate 11 to the power of 2 and get 121.
1034-\frac{11^{3}}{3}+2\times 11^{2}
Subtract 121 from 1155 to get 1034.
1034-\frac{1331}{3}+2\times 11^{2}
Calculate 11 to the power of 3 and get 1331.
\frac{3102}{3}-\frac{1331}{3}+2\times 11^{2}
Convert 1034 to fraction \frac{3102}{3}.
\frac{3102-1331}{3}+2\times 11^{2}
Since \frac{3102}{3} and \frac{1331}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1771}{3}+2\times 11^{2}
Subtract 1331 from 3102 to get 1771.
\frac{1771}{3}+2\times 121
Calculate 11 to the power of 2 and get 121.
\frac{1771}{3}+242
Multiply 2 and 121 to get 242.
\frac{1771}{3}+\frac{726}{3}
Convert 242 to fraction \frac{726}{3}.
\frac{1771+726}{3}
Since \frac{1771}{3} and \frac{726}{3} have the same denominator, add them by adding their numerators.
\frac{2497}{3}
Add 1771 and 726 to get 2497.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}