Evaluate
\frac{35}{27}\approx 1.296296296
Factor
\frac{5 \cdot 7}{3 ^ {3}} = 1\frac{8}{27} = 1.2962962962962963
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)105}\\\end{array}
Use the 1^{st} digit 1 from dividend 105
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)105}\\\end{array}
Since 1 is less than 81, use the next digit 0 from dividend 105 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)105}\\\end{array}
Use the 2^{nd} digit 0 from dividend 105
\begin{array}{l}\phantom{81)}00\phantom{4}\\81\overline{)105}\\\end{array}
Since 10 is less than 81, use the next digit 5 from dividend 105 and add 0 to the quotient
\begin{array}{l}\phantom{81)}00\phantom{5}\\81\overline{)105}\\\end{array}
Use the 3^{rd} digit 5 from dividend 105
\begin{array}{l}\phantom{81)}001\phantom{6}\\81\overline{)105}\\\phantom{81)}\underline{\phantom{9}81\phantom{}}\\\phantom{81)9}24\\\end{array}
Find closest multiple of 81 to 105. We see that 1 \times 81 = 81 is the nearest. Now subtract 81 from 105 to get reminder 24. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }24
Since 24 is less than 81, stop the division. The reminder is 24. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}