Evaluate
\frac{35}{6}\approx 5.833333333
Factor
\frac{5 \cdot 7}{2 \cdot 3} = 5\frac{5}{6} = 5.833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)105}\\\end{array}
Use the 1^{st} digit 1 from dividend 105
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)105}\\\end{array}
Since 1 is less than 18, use the next digit 0 from dividend 105 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)105}\\\end{array}
Use the 2^{nd} digit 0 from dividend 105
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)105}\\\end{array}
Since 10 is less than 18, use the next digit 5 from dividend 105 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)105}\\\end{array}
Use the 3^{rd} digit 5 from dividend 105
\begin{array}{l}\phantom{18)}005\phantom{6}\\18\overline{)105}\\\phantom{18)}\underline{\phantom{9}90\phantom{}}\\\phantom{18)9}15\\\end{array}
Find closest multiple of 18 to 105. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 105 to get reminder 15. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }15
Since 15 is less than 18, stop the division. The reminder is 15. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}