Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+8x+105
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-105=-105
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+105. To find a and b, set up a system to be solved.
-1,105 -3,35 -5,21 -7,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -105.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
Calculate the sum for each pair.
a=15 b=-7
The solution is the pair that gives sum 8.
\left(-x^{2}+15x\right)+\left(-7x+105\right)
Rewrite -x^{2}+8x+105 as \left(-x^{2}+15x\right)+\left(-7x+105\right).
-x\left(x-15\right)-7\left(x-15\right)
Factor out -x in the first and -7 in the second group.
\left(x-15\right)\left(-x-7\right)
Factor out common term x-15 by using distributive property.
-x^{2}+8x+105=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 105}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 105}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 105}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+420}}{2\left(-1\right)}
Multiply 4 times 105.
x=\frac{-8±\sqrt{484}}{2\left(-1\right)}
Add 64 to 420.
x=\frac{-8±22}{2\left(-1\right)}
Take the square root of 484.
x=\frac{-8±22}{-2}
Multiply 2 times -1.
x=\frac{14}{-2}
Now solve the equation x=\frac{-8±22}{-2} when ± is plus. Add -8 to 22.
x=-7
Divide 14 by -2.
x=-\frac{30}{-2}
Now solve the equation x=\frac{-8±22}{-2} when ± is minus. Subtract 22 from -8.
x=15
Divide -30 by -2.
-x^{2}+8x+105=-\left(x-\left(-7\right)\right)\left(x-15\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7 for x_{1} and 15 for x_{2}.
-x^{2}+8x+105=-\left(x+7\right)\left(x-15\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.