Solve for x
x=-\sqrt{455-75\sqrt{17}}\approx -12.073403749
x=\sqrt{455-75\sqrt{17}}\approx 12.073403749
x=\sqrt{75\sqrt{17}+455}\approx 27.644763011
x=-\sqrt{75\sqrt{17}+455}\approx -27.644763011
Graph
Share
Copied to clipboard
102400=910x^{2}-9000-x^{4}
Use the distributive property to multiply 900-x^{2} by x^{2}-10 and combine like terms.
910x^{2}-9000-x^{4}=102400
Swap sides so that all variable terms are on the left hand side.
910x^{2}-9000-x^{4}-102400=0
Subtract 102400 from both sides.
910x^{2}-111400-x^{4}=0
Subtract 102400 from -9000 to get -111400.
-t^{2}+910t-111400=0
Substitute t for x^{2}.
t=\frac{-910±\sqrt{910^{2}-4\left(-1\right)\left(-111400\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 910 for b, and -111400 for c in the quadratic formula.
t=\frac{-910±150\sqrt{17}}{-2}
Do the calculations.
t=455-75\sqrt{17} t=75\sqrt{17}+455
Solve the equation t=\frac{-910±150\sqrt{17}}{-2} when ± is plus and when ± is minus.
x=\sqrt{455-75\sqrt{17}} x=-\sqrt{455-75\sqrt{17}} x=\sqrt{75\sqrt{17}+455} x=-\sqrt{75\sqrt{17}+455}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}