Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

1024m^{2}=91
Add 91 to both sides. Anything plus zero gives itself.
m^{2}=\frac{91}{1024}
Divide both sides by 1024.
m=\frac{\sqrt{91}}{32} m=-\frac{\sqrt{91}}{32}
Take the square root of both sides of the equation.
1024m^{2}-91=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 1024\left(-91\right)}}{2\times 1024}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1024 for a, 0 for b, and -91 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 1024\left(-91\right)}}{2\times 1024}
Square 0.
m=\frac{0±\sqrt{-4096\left(-91\right)}}{2\times 1024}
Multiply -4 times 1024.
m=\frac{0±\sqrt{372736}}{2\times 1024}
Multiply -4096 times -91.
m=\frac{0±64\sqrt{91}}{2\times 1024}
Take the square root of 372736.
m=\frac{0±64\sqrt{91}}{2048}
Multiply 2 times 1024.
m=\frac{\sqrt{91}}{32}
Now solve the equation m=\frac{0±64\sqrt{91}}{2048} when ± is plus.
m=-\frac{\sqrt{91}}{32}
Now solve the equation m=\frac{0±64\sqrt{91}}{2048} when ± is minus.
m=\frac{\sqrt{91}}{32} m=-\frac{\sqrt{91}}{32}
The equation is now solved.