Solve for x (complex solution)
x=\frac{-3+\sqrt{71}i}{8}\approx -0.375+1.053268722i
x=\frac{-\sqrt{71}i-3}{8}\approx -0.375-1.053268722i
Graph
Share
Copied to clipboard
1024x^{2}+768x+1280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-768±\sqrt{768^{2}-4\times 1024\times 1280}}{2\times 1024}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1024 for a, 768 for b, and 1280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-768±\sqrt{589824-4\times 1024\times 1280}}{2\times 1024}
Square 768.
x=\frac{-768±\sqrt{589824-4096\times 1280}}{2\times 1024}
Multiply -4 times 1024.
x=\frac{-768±\sqrt{589824-5242880}}{2\times 1024}
Multiply -4096 times 1280.
x=\frac{-768±\sqrt{-4653056}}{2\times 1024}
Add 589824 to -5242880.
x=\frac{-768±256\sqrt{71}i}{2\times 1024}
Take the square root of -4653056.
x=\frac{-768±256\sqrt{71}i}{2048}
Multiply 2 times 1024.
x=\frac{-768+256\sqrt{71}i}{2048}
Now solve the equation x=\frac{-768±256\sqrt{71}i}{2048} when ± is plus. Add -768 to 256i\sqrt{71}.
x=\frac{-3+\sqrt{71}i}{8}
Divide -768+256i\sqrt{71} by 2048.
x=\frac{-256\sqrt{71}i-768}{2048}
Now solve the equation x=\frac{-768±256\sqrt{71}i}{2048} when ± is minus. Subtract 256i\sqrt{71} from -768.
x=\frac{-\sqrt{71}i-3}{8}
Divide -768-256i\sqrt{71} by 2048.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
The equation is now solved.
1024x^{2}+768x+1280=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1024x^{2}+768x+1280-1280=-1280
Subtract 1280 from both sides of the equation.
1024x^{2}+768x=-1280
Subtracting 1280 from itself leaves 0.
\frac{1024x^{2}+768x}{1024}=-\frac{1280}{1024}
Divide both sides by 1024.
x^{2}+\frac{768}{1024}x=-\frac{1280}{1024}
Dividing by 1024 undoes the multiplication by 1024.
x^{2}+\frac{3}{4}x=-\frac{1280}{1024}
Reduce the fraction \frac{768}{1024} to lowest terms by extracting and canceling out 256.
x^{2}+\frac{3}{4}x=-\frac{5}{4}
Reduce the fraction \frac{-1280}{1024} to lowest terms by extracting and canceling out 256.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{5}{4}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{71}{64}
Add -\frac{5}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=-\frac{71}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{-\frac{71}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{71}i}{8} x+\frac{3}{8}=-\frac{\sqrt{71}i}{8}
Simplify.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}