Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 1. Write the result 1024 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 5. Write the result 5120 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 2. Write the result 2048 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\phantom{\times999}4096\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 4. Write the result 4096 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\phantom{\times999}4096\phantom{999}\\\phantom{\times99}2048\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 2. Write the result 2048 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\phantom{\times999}4096\phantom{999}\\\phantom{\times99}2048\phantom{9999}\\\phantom{\times99999}0\phantom{99999}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 0. Write the result 0 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\phantom{\times999}4096\phantom{999}\\\phantom{\times99}2048\phantom{9999}\\\phantom{\times99999}0\phantom{99999}\\\underline{\phantom{\times}1024\phantom{999999}}\\\end{array}
Now multiply the first number with the 7^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1024 with 1. Write the result 1024 at the end leaving 6 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}1024\\\underline{\times\phantom{999}1024251}\\\phantom{\times999999}1024\\\phantom{\times99999}5120\phantom{9}\\\phantom{\times9999}2048\phantom{99}\\\phantom{\times999}4096\phantom{999}\\\phantom{\times99}2048\phantom{9999}\\\phantom{\times99999}0\phantom{99999}\\\underline{\phantom{\times}1024\phantom{999999}}\\\phantom{\times}1048833024\end{array}
Now add the intermediate results to get final answer.