Evaluate
\frac{128}{15}\approx 8.533333333
Factor
\frac{2 ^ {7}}{3 \cdot 5} = 8\frac{8}{15} = 8.533333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)1024}\\\end{array}
Use the 1^{st} digit 1 from dividend 1024
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)1024}\\\end{array}
Since 1 is less than 120, use the next digit 0 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)1024}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1024
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)1024}\\\end{array}
Since 10 is less than 120, use the next digit 2 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)1024}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1024
\begin{array}{l}\phantom{120)}000\phantom{6}\\120\overline{)1024}\\\end{array}
Since 102 is less than 120, use the next digit 4 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{120)}000\phantom{7}\\120\overline{)1024}\\\end{array}
Use the 4^{th} digit 4 from dividend 1024
\begin{array}{l}\phantom{120)}0008\phantom{8}\\120\overline{)1024}\\\phantom{120)}\underline{\phantom{9}960\phantom{}}\\\phantom{120)99}64\\\end{array}
Find closest multiple of 120 to 1024. We see that 8 \times 120 = 960 is the nearest. Now subtract 960 from 1024 to get reminder 64. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }64
Since 64 is less than 120, stop the division. The reminder is 64. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}