Evaluate
\frac{101}{18}\approx 5.611111111
Factor
\frac{101}{2 \cdot 3 ^ {2}} = 5\frac{11}{18} = 5.611111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)101}\\\end{array}
Use the 1^{st} digit 1 from dividend 101
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)101}\\\end{array}
Since 1 is less than 18, use the next digit 0 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)101}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)101}\\\end{array}
Since 10 is less than 18, use the next digit 1 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)101}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101
\begin{array}{l}\phantom{18)}005\phantom{6}\\18\overline{)101}\\\phantom{18)}\underline{\phantom{9}90\phantom{}}\\\phantom{18)9}11\\\end{array}
Find closest multiple of 18 to 101. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 101 to get reminder 11. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }11
Since 11 is less than 18, stop the division. The reminder is 11. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}