Solve for x (complex solution)
x=5+5\sqrt{15}i\approx 5+19.364916731i
x=-5\sqrt{15}i+5\approx 5-19.364916731i
Graph
Share
Copied to clipboard
-10x^{2}+100x=4000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+100x-4000=4000-4000
Subtract 4000 from both sides of the equation.
-10x^{2}+100x-4000=0
Subtracting 4000 from itself leaves 0.
x=\frac{-100±\sqrt{100^{2}-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 100 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
Square 100.
x=\frac{-100±\sqrt{10000+40\left(-4000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-100±\sqrt{10000-160000}}{2\left(-10\right)}
Multiply 40 times -4000.
x=\frac{-100±\sqrt{-150000}}{2\left(-10\right)}
Add 10000 to -160000.
x=\frac{-100±100\sqrt{15}i}{2\left(-10\right)}
Take the square root of -150000.
x=\frac{-100±100\sqrt{15}i}{-20}
Multiply 2 times -10.
x=\frac{-100+100\sqrt{15}i}{-20}
Now solve the equation x=\frac{-100±100\sqrt{15}i}{-20} when ± is plus. Add -100 to 100i\sqrt{15}.
x=-5\sqrt{15}i+5
Divide -100+100i\sqrt{15} by -20.
x=\frac{-100\sqrt{15}i-100}{-20}
Now solve the equation x=\frac{-100±100\sqrt{15}i}{-20} when ± is minus. Subtract 100i\sqrt{15} from -100.
x=5+5\sqrt{15}i
Divide -100-100i\sqrt{15} by -20.
x=-5\sqrt{15}i+5 x=5+5\sqrt{15}i
The equation is now solved.
-10x^{2}+100x=4000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+100x}{-10}=\frac{4000}{-10}
Divide both sides by -10.
x^{2}+\frac{100}{-10}x=\frac{4000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-10x=\frac{4000}{-10}
Divide 100 by -10.
x^{2}-10x=-400
Divide 4000 by -10.
x^{2}-10x+\left(-5\right)^{2}=-400+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-400+25
Square -5.
x^{2}-10x+25=-375
Add -400 to 25.
\left(x-5\right)^{2}=-375
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-375}
Take the square root of both sides of the equation.
x-5=5\sqrt{15}i x-5=-5\sqrt{15}i
Simplify.
x=5+5\sqrt{15}i x=-5\sqrt{15}i+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}