Evaluate
\frac{5043}{5005}\approx 1.007592408
Factor
\frac{3 \cdot 41 ^ {2}}{5 \cdot 7 \cdot 11 \cdot 13} = 1\frac{38}{5005} = 1.0075924075924076
Share
Copied to clipboard
\begin{array}{l}\phantom{10010)}\phantom{1}\\10010\overline{)10086}\\\end{array}
Use the 1^{st} digit 1 from dividend 10086
\begin{array}{l}\phantom{10010)}0\phantom{2}\\10010\overline{)10086}\\\end{array}
Since 1 is less than 10010, use the next digit 0 from dividend 10086 and add 0 to the quotient
\begin{array}{l}\phantom{10010)}0\phantom{3}\\10010\overline{)10086}\\\end{array}
Use the 2^{nd} digit 0 from dividend 10086
\begin{array}{l}\phantom{10010)}00\phantom{4}\\10010\overline{)10086}\\\end{array}
Since 10 is less than 10010, use the next digit 0 from dividend 10086 and add 0 to the quotient
\begin{array}{l}\phantom{10010)}00\phantom{5}\\10010\overline{)10086}\\\end{array}
Use the 3^{rd} digit 0 from dividend 10086
\begin{array}{l}\phantom{10010)}000\phantom{6}\\10010\overline{)10086}\\\end{array}
Since 100 is less than 10010, use the next digit 8 from dividend 10086 and add 0 to the quotient
\begin{array}{l}\phantom{10010)}000\phantom{7}\\10010\overline{)10086}\\\end{array}
Use the 4^{th} digit 8 from dividend 10086
\begin{array}{l}\phantom{10010)}0000\phantom{8}\\10010\overline{)10086}\\\end{array}
Since 1008 is less than 10010, use the next digit 6 from dividend 10086 and add 0 to the quotient
\begin{array}{l}\phantom{10010)}0000\phantom{9}\\10010\overline{)10086}\\\end{array}
Use the 5^{th} digit 6 from dividend 10086
\begin{array}{l}\phantom{10010)}00001\phantom{10}\\10010\overline{)10086}\\\phantom{10010)}\underline{\phantom{}10010\phantom{}}\\\phantom{10010)999}76\\\end{array}
Find closest multiple of 10010 to 10086. We see that 1 \times 10010 = 10010 is the nearest. Now subtract 10010 from 10086 to get reminder 76. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }76
Since 76 is less than 10010, stop the division. The reminder is 76. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}