Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

1006x^{2}-10x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 1006\left(-4\right)}}{2\times 1006}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 1006\left(-4\right)}}{2\times 1006}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-4024\left(-4\right)}}{2\times 1006}
Multiply -4 times 1006.
x=\frac{-\left(-10\right)±\sqrt{100+16096}}{2\times 1006}
Multiply -4024 times -4.
x=\frac{-\left(-10\right)±\sqrt{16196}}{2\times 1006}
Add 100 to 16096.
x=\frac{-\left(-10\right)±2\sqrt{4049}}{2\times 1006}
Take the square root of 16196.
x=\frac{10±2\sqrt{4049}}{2\times 1006}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{4049}}{2012}
Multiply 2 times 1006.
x=\frac{2\sqrt{4049}+10}{2012}
Now solve the equation x=\frac{10±2\sqrt{4049}}{2012} when ± is plus. Add 10 to 2\sqrt{4049}.
x=\frac{\sqrt{4049}+5}{1006}
Divide 10+2\sqrt{4049} by 2012.
x=\frac{10-2\sqrt{4049}}{2012}
Now solve the equation x=\frac{10±2\sqrt{4049}}{2012} when ± is minus. Subtract 2\sqrt{4049} from 10.
x=\frac{5-\sqrt{4049}}{1006}
Divide 10-2\sqrt{4049} by 2012.
1006x^{2}-10x-4=1006\left(x-\frac{\sqrt{4049}+5}{1006}\right)\left(x-\frac{5-\sqrt{4049}}{1006}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+\sqrt{4049}}{1006} for x_{1} and \frac{5-\sqrt{4049}}{1006} for x_{2}.
x ^ 2 -\frac{5}{503}x -\frac{2}{503} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 1006
r + s = \frac{5}{503} rs = -\frac{2}{503}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{1006} - u s = \frac{5}{1006} + u
Two numbers r and s sum up to \frac{5}{503} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{503} = \frac{5}{1006}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{1006} - u) (\frac{5}{1006} + u) = -\frac{2}{503}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{2}{503}
\frac{25}{1012036} - u^2 = -\frac{2}{503}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{2}{503}-\frac{25}{1012036} = \frac{4049}{1012036}
Simplify the expression by subtracting \frac{25}{1012036} on both sides
u^2 = -\frac{4049}{1012036} u = \pm\sqrt{-\frac{4049}{1012036}} = \pm \frac{\sqrt{4049}}{1006}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{1006} - \frac{\sqrt{4049}}{1006}i = -0.058 s = \frac{5}{1006} + \frac{\sqrt{4049}}{1006}i = 0.068
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.