Evaluate
\frac{10000}{3}\approx 3333.333333333
Factor
\frac{2 ^ {4} \cdot 5 ^ {4}}{3} = 3333\frac{1}{3} = 3333.3333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)100000}\\\end{array}
Use the 1^{st} digit 1 from dividend 100000
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)100000}\\\end{array}
Since 1 is less than 30, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)100000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100000
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)100000}\\\end{array}
Since 10 is less than 30, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)100000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100000
\begin{array}{l}\phantom{30)}003\phantom{6}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}10\\\end{array}
Find closest multiple of 30 to 100. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{30)}003\phantom{7}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\end{array}
Use the 4^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{30)}0033\phantom{8}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}10\\\end{array}
Find closest multiple of 30 to 100. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{30)}0033\phantom{9}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}100\\\end{array}
Use the 5^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{30)}00333\phantom{10}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}100\\\phantom{30)}\underline{\phantom{999}90\phantom{9}}\\\phantom{30)999}10\\\end{array}
Find closest multiple of 30 to 100. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{30)}00333\phantom{11}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}100\\\phantom{30)}\underline{\phantom{999}90\phantom{9}}\\\phantom{30)999}100\\\end{array}
Use the 6^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{30)}003333\phantom{12}\\30\overline{)100000}\\\phantom{30)}\underline{\phantom{9}90\phantom{999}}\\\phantom{30)9}100\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}100\\\phantom{30)}\underline{\phantom{999}90\phantom{9}}\\\phantom{30)999}100\\\phantom{30)}\underline{\phantom{9999}90\phantom{}}\\\phantom{30)9999}10\\\end{array}
Find closest multiple of 30 to 100. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 3 to quotient.
\text{Quotient: }3333 \text{Reminder: }10
Since 10 is less than 30, stop the division. The reminder is 10. The topmost line 003333 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3333.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}