10000 \times ( 1 + k \% ) ^ { 2 } = 22500
Solve for k
k=50
k=-250
Share
Copied to clipboard
\frac{10000\left(\frac{1}{100}k+1\right)^{2}}{10000}=\frac{22500}{10000}
Divide both sides by 10000.
\left(\frac{1}{100}k+1\right)^{2}=\frac{22500}{10000}
Dividing by 10000 undoes the multiplication by 10000.
\left(\frac{1}{100}k+1\right)^{2}=\frac{9}{4}
Reduce the fraction \frac{22500}{10000} to lowest terms by extracting and canceling out 2500.
\frac{1}{100}k+1=\frac{3}{2} \frac{1}{100}k+1=-\frac{3}{2}
Take the square root of both sides of the equation.
\frac{1}{100}k+1-1=\frac{3}{2}-1 \frac{1}{100}k+1-1=-\frac{3}{2}-1
Subtract 1 from both sides of the equation.
\frac{1}{100}k=\frac{3}{2}-1 \frac{1}{100}k=-\frac{3}{2}-1
Subtracting 1 from itself leaves 0.
\frac{1}{100}k=\frac{1}{2}
Subtract 1 from \frac{3}{2}.
\frac{1}{100}k=-\frac{5}{2}
Subtract 1 from -\frac{3}{2}.
\frac{\frac{1}{100}k}{\frac{1}{100}}=\frac{\frac{1}{2}}{\frac{1}{100}} \frac{\frac{1}{100}k}{\frac{1}{100}}=-\frac{\frac{5}{2}}{\frac{1}{100}}
Multiply both sides by 100.
k=\frac{\frac{1}{2}}{\frac{1}{100}} k=-\frac{\frac{5}{2}}{\frac{1}{100}}
Dividing by \frac{1}{100} undoes the multiplication by \frac{1}{100}.
k=50
Divide \frac{1}{2} by \frac{1}{100} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{100}.
k=-250
Divide -\frac{5}{2} by \frac{1}{100} by multiplying -\frac{5}{2} by the reciprocal of \frac{1}{100}.
k=50 k=-250
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}