Solve for y (complex solution)
y=\frac{100\sqrt{249}\left(20\sqrt{\frac{\pi \left(\pi x^{2}+0.05\right)}{x^{2}}}x^{2}+20\pi x^{2}+1\right)}{2739}
x\neq 0\text{ and }x\neq \frac{-i}{2\sqrt{5\pi }}\text{ and }x\neq \frac{i}{2\sqrt{5\pi }}
Solve for y
y=-\frac{100\sqrt{249\pi x^{2}+12.45}}{2739\left(-\sqrt{\pi x^{2}+0.05}+\sqrt{\pi }|x|\right)}
x\neq 0
Solve for x (complex solution)
x=-\frac{i\left(\pi \left(11\sqrt{249}y-50\right)\right)^{-0.5}\sqrt{10\left(-30129y^{2}+2200\sqrt{249}y-10000\right)}}{200}
x=\frac{i\left(\pi \left(11\sqrt{249}y-50\right)\right)^{-0.5}\sqrt{10\left(-30129y^{2}+2200\sqrt{249}y-10000\right)}}{200}\text{, }y\neq \frac{50\sqrt{249}}{2739}\text{ and }y\neq 0\text{ and }y\neq \frac{100\sqrt{249}}{2739}\text{ and }|arg(\sqrt{\frac{y^{2}}{\left(-2739y+100\sqrt{249}\right)^{2}}}\left(-2739y+100\sqrt{249}\right))-arg(-y)|<\pi
Solve for x
x=\frac{\sqrt{\frac{2490\left(11\sqrt{249}y+50\right)}{\pi \left(30129y^{2}-2500\right)}}\left(-2739y+100\sqrt{249}\right)}{49800}
x=-\frac{\sqrt{\frac{2490\left(11\sqrt{249}y+50\right)}{\pi \left(30129y^{2}-2500\right)}}\left(-2739y+100\sqrt{249}\right)}{49800}\text{, }y>\frac{100\sqrt{249}}{2739}
Graph
Share
Copied to clipboard
2000=1.1y\sqrt{9.96\times 10^{6}}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply both sides of the equation by 2.
2000=1.1y\sqrt{9.96\times 1000000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Calculate 10 to the power of 6 and get 1000000.
2000=1.1y\sqrt{9960000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 9.96 and 1000000 to get 9960000.
2000=1.1y\times 200\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
2000=220y\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 1.1 and 200 to get 220.
2000=220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Use the distributive property to multiply 220y\sqrt{249} by 1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}.
220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)=2000
Swap sides so that all variable terms are on the left hand side.
220y\sqrt{249}-220y\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}=2000
Multiply 220 and -1 to get -220.
\left(220\sqrt{249}-220\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)y=2000
Combine all terms containing y.
\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y=2000
The equation is in standard form.
\frac{\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Divide both sides by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Dividing by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1} undoes the multiplication by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{100\sqrt{249\pi +\frac{249}{20x^{2}}}}{249\left(11\sqrt{\pi +\frac{1}{20x^{2}}}-11\sqrt{\pi }\right)}
Divide 2000 by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
2000=1.1y\sqrt{9.96\times 10^{6}}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply both sides of the equation by 2.
2000=1.1y\sqrt{9.96\times 1000000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Calculate 10 to the power of 6 and get 1000000.
2000=1.1y\sqrt{9960000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 9.96 and 1000000 to get 9960000.
2000=1.1y\times 200\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
2000=220y\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 1.1 and 200 to get 220.
2000=220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Use the distributive property to multiply 220y\sqrt{249} by 1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}.
220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)=2000
Swap sides so that all variable terms are on the left hand side.
220y\sqrt{249}-220y\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}=2000
Multiply 220 and -1 to get -220.
\left(220\sqrt{249}-220\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)y=2000
Combine all terms containing y.
\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y=2000
The equation is in standard form.
\frac{\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Divide both sides by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Dividing by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1} undoes the multiplication by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=-\frac{100\sqrt{249\pi x^{2}+12.45}}{2739\left(-\sqrt{\pi x^{2}+0.05}+\sqrt{\pi }|x|\right)}
Divide 2000 by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}