Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Share

2000=1.1y\sqrt{9.96\times 10^{6}}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply both sides of the equation by 2.
2000=1.1y\sqrt{9.96\times 1000000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Calculate 10 to the power of 6 and get 1000000.
2000=1.1y\sqrt{9960000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 9.96 and 1000000 to get 9960000.
2000=1.1y\times 200\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
2000=220y\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 1.1 and 200 to get 220.
2000=220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Use the distributive property to multiply 220y\sqrt{249} by 1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}.
220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)=2000
Swap sides so that all variable terms are on the left hand side.
220y\sqrt{249}-220y\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}=2000
Multiply 220 and -1 to get -220.
\left(220\sqrt{249}-220\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)y=2000
Combine all terms containing y.
\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y=2000
The equation is in standard form.
\frac{\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Divide both sides by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Dividing by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1} undoes the multiplication by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{100\sqrt{249\pi +\frac{249}{20x^{2}}}}{249\left(11\sqrt{\pi +\frac{1}{20x^{2}}}-11\sqrt{\pi }\right)}
Divide 2000 by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
2000=1.1y\sqrt{9.96\times 10^{6}}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply both sides of the equation by 2.
2000=1.1y\sqrt{9.96\times 1000000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Calculate 10 to the power of 6 and get 1000000.
2000=1.1y\sqrt{9960000}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 9.96 and 1000000 to get 9960000.
2000=1.1y\times 200\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
2000=220y\sqrt{249}\left(1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Multiply 1.1 and 200 to get 220.
2000=220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)
Use the distributive property to multiply 220y\sqrt{249} by 1-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}.
220y\sqrt{249}+220y\sqrt{249}\left(-\frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)=2000
Swap sides so that all variable terms are on the left hand side.
220y\sqrt{249}-220y\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}=2000
Multiply 220 and -1 to get -220.
\left(220\sqrt{249}-220\sqrt{249}\times \frac{1}{\sqrt{1+\frac{0.05}{\pi x^{2}}}}\right)y=2000
Combine all terms containing y.
\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y=2000
The equation is in standard form.
\frac{\left(-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}\right)y}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Divide both sides by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=\frac{2000}{-\frac{220\sqrt{249}}{\sqrt{1+\frac{1}{20\pi x^{2}}}}+220\sqrt{249}}
Dividing by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1} undoes the multiplication by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.
y=-\frac{100\sqrt{249\pi x^{2}+12.45}}{2739\left(-\sqrt{\pi x^{2}+0.05}+\sqrt{\pi }|x|\right)}
Divide 2000 by 220\sqrt{249}-220\sqrt{249}\left(\sqrt{1+0.05\pi ^{-1}x^{-2}}\right)^{-1}.