Solve for o (complex solution)
\left\{\begin{matrix}o=\frac{25g}{882z}\text{, }&z\neq 0\\o\in \mathrm{C}\text{, }&g=0\text{ and }z=0\end{matrix}\right.
Solve for g
g=\frac{882oz}{25}
Solve for o
\left\{\begin{matrix}o=\frac{25g}{882z}\text{, }&z\neq 0\\o\in \mathrm{R}\text{, }&g=0\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
1000g=35280oz
Multiply 2205 and 16 to get 35280.
35280oz=1000g
Swap sides so that all variable terms are on the left hand side.
35280zo=1000g
The equation is in standard form.
\frac{35280zo}{35280z}=\frac{1000g}{35280z}
Divide both sides by 35280z.
o=\frac{1000g}{35280z}
Dividing by 35280z undoes the multiplication by 35280z.
o=\frac{25g}{882z}
Divide 1000g by 35280z.
1000g=35280oz
Multiply 2205 and 16 to get 35280.
\frac{1000g}{1000}=\frac{35280oz}{1000}
Divide both sides by 1000.
g=\frac{35280oz}{1000}
Dividing by 1000 undoes the multiplication by 1000.
g=\frac{882oz}{25}
Divide 35280oz by 1000.
1000g=35280oz
Multiply 2205 and 16 to get 35280.
35280oz=1000g
Swap sides so that all variable terms are on the left hand side.
35280zo=1000g
The equation is in standard form.
\frac{35280zo}{35280z}=\frac{1000g}{35280z}
Divide both sides by 35280z.
o=\frac{1000g}{35280z}
Dividing by 35280z undoes the multiplication by 35280z.
o=\frac{25g}{882z}
Divide 1000g by 35280z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}