Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1000x^{2}+6125x+125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6125±\sqrt{6125^{2}-4\times 1000\times 125}}{2\times 1000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1000 for a, 6125 for b, and 125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6125±\sqrt{37515625-4\times 1000\times 125}}{2\times 1000}
Square 6125.
x=\frac{-6125±\sqrt{37515625-4000\times 125}}{2\times 1000}
Multiply -4 times 1000.
x=\frac{-6125±\sqrt{37515625-500000}}{2\times 1000}
Multiply -4000 times 125.
x=\frac{-6125±\sqrt{37015625}}{2\times 1000}
Add 37515625 to -500000.
x=\frac{-6125±125\sqrt{2369}}{2\times 1000}
Take the square root of 37015625.
x=\frac{-6125±125\sqrt{2369}}{2000}
Multiply 2 times 1000.
x=\frac{125\sqrt{2369}-6125}{2000}
Now solve the equation x=\frac{-6125±125\sqrt{2369}}{2000} when ± is plus. Add -6125 to 125\sqrt{2369}.
x=\frac{\sqrt{2369}-49}{16}
Divide -6125+125\sqrt{2369} by 2000.
x=\frac{-125\sqrt{2369}-6125}{2000}
Now solve the equation x=\frac{-6125±125\sqrt{2369}}{2000} when ± is minus. Subtract 125\sqrt{2369} from -6125.
x=\frac{-\sqrt{2369}-49}{16}
Divide -6125-125\sqrt{2369} by 2000.
x=\frac{\sqrt{2369}-49}{16} x=\frac{-\sqrt{2369}-49}{16}
The equation is now solved.
1000x^{2}+6125x+125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1000x^{2}+6125x+125-125=-125
Subtract 125 from both sides of the equation.
1000x^{2}+6125x=-125
Subtracting 125 from itself leaves 0.
\frac{1000x^{2}+6125x}{1000}=-\frac{125}{1000}
Divide both sides by 1000.
x^{2}+\frac{6125}{1000}x=-\frac{125}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x^{2}+\frac{49}{8}x=-\frac{125}{1000}
Reduce the fraction \frac{6125}{1000} to lowest terms by extracting and canceling out 125.
x^{2}+\frac{49}{8}x=-\frac{1}{8}
Reduce the fraction \frac{-125}{1000} to lowest terms by extracting and canceling out 125.
x^{2}+\frac{49}{8}x+\left(\frac{49}{16}\right)^{2}=-\frac{1}{8}+\left(\frac{49}{16}\right)^{2}
Divide \frac{49}{8}, the coefficient of the x term, by 2 to get \frac{49}{16}. Then add the square of \frac{49}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{49}{8}x+\frac{2401}{256}=-\frac{1}{8}+\frac{2401}{256}
Square \frac{49}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{49}{8}x+\frac{2401}{256}=\frac{2369}{256}
Add -\frac{1}{8} to \frac{2401}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{49}{16}\right)^{2}=\frac{2369}{256}
Factor x^{2}+\frac{49}{8}x+\frac{2401}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{16}\right)^{2}}=\sqrt{\frac{2369}{256}}
Take the square root of both sides of the equation.
x+\frac{49}{16}=\frac{\sqrt{2369}}{16} x+\frac{49}{16}=-\frac{\sqrt{2369}}{16}
Simplify.
x=\frac{\sqrt{2369}-49}{16} x=\frac{-\sqrt{2369}-49}{16}
Subtract \frac{49}{16} from both sides of the equation.