Solve for x
x=\frac{\sqrt{2081}-49}{160}\approx -0.021137632
x=\frac{-\sqrt{2081}-49}{160}\approx -0.591362368
Graph
Share
Copied to clipboard
1000x^{2}+612.5x+12.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-612.5±\sqrt{612.5^{2}-4\times 1000\times 12.5}}{2\times 1000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1000 for a, 612.5 for b, and 12.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-612.5±\sqrt{375156.25-4\times 1000\times 12.5}}{2\times 1000}
Square 612.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-612.5±\sqrt{375156.25-4000\times 12.5}}{2\times 1000}
Multiply -4 times 1000.
x=\frac{-612.5±\sqrt{375156.25-50000}}{2\times 1000}
Multiply -4000 times 12.5.
x=\frac{-612.5±\sqrt{325156.25}}{2\times 1000}
Add 375156.25 to -50000.
x=\frac{-612.5±\frac{25\sqrt{2081}}{2}}{2\times 1000}
Take the square root of 325156.25.
x=\frac{-612.5±\frac{25\sqrt{2081}}{2}}{2000}
Multiply 2 times 1000.
x=\frac{25\sqrt{2081}-1225}{2\times 2000}
Now solve the equation x=\frac{-612.5±\frac{25\sqrt{2081}}{2}}{2000} when ± is plus. Add -612.5 to \frac{25\sqrt{2081}}{2}.
x=\frac{\sqrt{2081}-49}{160}
Divide \frac{-1225+25\sqrt{2081}}{2} by 2000.
x=\frac{-25\sqrt{2081}-1225}{2\times 2000}
Now solve the equation x=\frac{-612.5±\frac{25\sqrt{2081}}{2}}{2000} when ± is minus. Subtract \frac{25\sqrt{2081}}{2} from -612.5.
x=\frac{-\sqrt{2081}-49}{160}
Divide \frac{-1225-25\sqrt{2081}}{2} by 2000.
x=\frac{\sqrt{2081}-49}{160} x=\frac{-\sqrt{2081}-49}{160}
The equation is now solved.
1000x^{2}+612.5x+12.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1000x^{2}+612.5x+12.5-12.5=-12.5
Subtract 12.5 from both sides of the equation.
1000x^{2}+612.5x=-12.5
Subtracting 12.5 from itself leaves 0.
\frac{1000x^{2}+612.5x}{1000}=-\frac{12.5}{1000}
Divide both sides by 1000.
x^{2}+\frac{612.5}{1000}x=-\frac{12.5}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x^{2}+0.6125x=-\frac{12.5}{1000}
Divide 612.5 by 1000.
x^{2}+0.6125x=-0.0125
Divide -12.5 by 1000.
x^{2}+0.6125x+0.30625^{2}=-0.0125+0.30625^{2}
Divide 0.6125, the coefficient of the x term, by 2 to get 0.30625. Then add the square of 0.30625 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.6125x+0.0937890625=-0.0125+0.0937890625
Square 0.30625 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.6125x+0.0937890625=0.0812890625
Add -0.0125 to 0.0937890625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.30625\right)^{2}=0.0812890625
Factor x^{2}+0.6125x+0.0937890625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.30625\right)^{2}}=\sqrt{0.0812890625}
Take the square root of both sides of the equation.
x+0.30625=\frac{\sqrt{2081}}{160} x+0.30625=-\frac{\sqrt{2081}}{160}
Simplify.
x=\frac{\sqrt{2081}-49}{160} x=\frac{-\sqrt{2081}-49}{160}
Subtract 0.30625 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}