Evaluate
\frac{250}{43}\approx 5.813953488
Factor
\frac{2 \cdot 5 ^ {3}}{43} = 5\frac{35}{43} = 5.813953488372093
Share
Copied to clipboard
\begin{array}{l}\phantom{172)}\phantom{1}\\172\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{172)}0\phantom{2}\\172\overline{)1000}\\\end{array}
Since 1 is less than 172, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{172)}0\phantom{3}\\172\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{172)}00\phantom{4}\\172\overline{)1000}\\\end{array}
Since 10 is less than 172, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{172)}00\phantom{5}\\172\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{172)}000\phantom{6}\\172\overline{)1000}\\\end{array}
Since 100 is less than 172, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{172)}000\phantom{7}\\172\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{172)}0005\phantom{8}\\172\overline{)1000}\\\phantom{172)}\underline{\phantom{9}860\phantom{}}\\\phantom{172)9}140\\\end{array}
Find closest multiple of 172 to 1000. We see that 5 \times 172 = 860 is the nearest. Now subtract 860 from 1000 to get reminder 140. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }140
Since 140 is less than 172, stop the division. The reminder is 140. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}