Evaluate
\frac{1000}{157}\approx 6.369426752
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{157} = 6\frac{58}{157} = 6.369426751592357
Share
Copied to clipboard
\begin{array}{l}\phantom{157)}\phantom{1}\\157\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{157)}0\phantom{2}\\157\overline{)1000}\\\end{array}
Since 1 is less than 157, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{157)}0\phantom{3}\\157\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{157)}00\phantom{4}\\157\overline{)1000}\\\end{array}
Since 10 is less than 157, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{157)}00\phantom{5}\\157\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{157)}000\phantom{6}\\157\overline{)1000}\\\end{array}
Since 100 is less than 157, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{157)}000\phantom{7}\\157\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{157)}0006\phantom{8}\\157\overline{)1000}\\\phantom{157)}\underline{\phantom{9}942\phantom{}}\\\phantom{157)99}58\\\end{array}
Find closest multiple of 157 to 1000. We see that 6 \times 157 = 942 is the nearest. Now subtract 942 from 1000 to get reminder 58. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }58
Since 58 is less than 157, stop the division. The reminder is 58. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}