Evaluate
\frac{50}{7}\approx 7.142857143
Factor
\frac{2 \cdot 5 ^ {2}}{7} = 7\frac{1}{7} = 7.142857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{140)}\phantom{1}\\140\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{140)}0\phantom{2}\\140\overline{)1000}\\\end{array}
Since 1 is less than 140, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{140)}0\phantom{3}\\140\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{140)}00\phantom{4}\\140\overline{)1000}\\\end{array}
Since 10 is less than 140, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{140)}00\phantom{5}\\140\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{140)}000\phantom{6}\\140\overline{)1000}\\\end{array}
Since 100 is less than 140, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{140)}000\phantom{7}\\140\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{140)}0007\phantom{8}\\140\overline{)1000}\\\phantom{140)}\underline{\phantom{9}980\phantom{}}\\\phantom{140)99}20\\\end{array}
Find closest multiple of 140 to 1000. We see that 7 \times 140 = 980 is the nearest. Now subtract 980 from 1000 to get reminder 20. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }20
Since 20 is less than 140, stop the division. The reminder is 20. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}