Solve for x
x=5\sqrt{5}+25\approx 36.180339887
x=25-5\sqrt{5}\approx 13.819660113
Graph
Share
Copied to clipboard
100x-2x^{2}=1000
Swap sides so that all variable terms are on the left hand side.
100x-2x^{2}-1000=0
Subtract 1000 from both sides.
-2x^{2}+100x-1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-2\right)\left(-1000\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 100 for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-2\right)\left(-1000\right)}}{2\left(-2\right)}
Square 100.
x=\frac{-100±\sqrt{10000+8\left(-1000\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-100±\sqrt{10000-8000}}{2\left(-2\right)}
Multiply 8 times -1000.
x=\frac{-100±\sqrt{2000}}{2\left(-2\right)}
Add 10000 to -8000.
x=\frac{-100±20\sqrt{5}}{2\left(-2\right)}
Take the square root of 2000.
x=\frac{-100±20\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{5}-100}{-4}
Now solve the equation x=\frac{-100±20\sqrt{5}}{-4} when ± is plus. Add -100 to 20\sqrt{5}.
x=25-5\sqrt{5}
Divide -100+20\sqrt{5} by -4.
x=\frac{-20\sqrt{5}-100}{-4}
Now solve the equation x=\frac{-100±20\sqrt{5}}{-4} when ± is minus. Subtract 20\sqrt{5} from -100.
x=5\sqrt{5}+25
Divide -100-20\sqrt{5} by -4.
x=25-5\sqrt{5} x=5\sqrt{5}+25
The equation is now solved.
100x-2x^{2}=1000
Swap sides so that all variable terms are on the left hand side.
-2x^{2}+100x=1000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+100x}{-2}=\frac{1000}{-2}
Divide both sides by -2.
x^{2}+\frac{100}{-2}x=\frac{1000}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-50x=\frac{1000}{-2}
Divide 100 by -2.
x^{2}-50x=-500
Divide 1000 by -2.
x^{2}-50x+\left(-25\right)^{2}=-500+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-500+625
Square -25.
x^{2}-50x+625=125
Add -500 to 625.
\left(x-25\right)^{2}=125
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{125}
Take the square root of both sides of the equation.
x-25=5\sqrt{5} x-25=-5\sqrt{5}
Simplify.
x=5\sqrt{5}+25 x=25-5\sqrt{5}
Add 25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}