Evaluate
\frac{1015}{24}\approx 42.291666667
Factor
\frac{5 \cdot 7 \cdot 29}{3 \cdot 2 ^ {3}} = 42\frac{7}{24} = 42.291666666666664
Share
Copied to clipboard
\frac{1005}{360}+121\times \frac{6}{36}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Expand \frac{100.5}{36} by multiplying both numerator and the denominator by 10.
\frac{67}{24}+121\times \frac{6}{36}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Reduce the fraction \frac{1005}{360} to lowest terms by extracting and canceling out 15.
\frac{67}{24}+121\times \frac{1}{6}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
\frac{67}{24}+\frac{121}{6}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Multiply 121 and \frac{1}{6} to get \frac{121}{6}.
\frac{67}{24}+\frac{484}{24}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Least common multiple of 24 and 6 is 24. Convert \frac{67}{24} and \frac{121}{6} to fractions with denominator 24.
\frac{67+484}{24}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Since \frac{67}{24} and \frac{484}{24} have the same denominator, add them by adding their numerators.
\frac{551}{24}+144\times \frac{\frac{5}{36}}{36}+169\times \frac{4}{36}
Add 67 and 484 to get 551.
\frac{551}{24}+144\times \frac{5}{36\times 36}+169\times \frac{4}{36}
Express \frac{\frac{5}{36}}{36} as a single fraction.
\frac{551}{24}+144\times \frac{5}{1296}+169\times \frac{4}{36}
Multiply 36 and 36 to get 1296.
\frac{551}{24}+\frac{144\times 5}{1296}+169\times \frac{4}{36}
Express 144\times \frac{5}{1296} as a single fraction.
\frac{551}{24}+\frac{720}{1296}+169\times \frac{4}{36}
Multiply 144 and 5 to get 720.
\frac{551}{24}+\frac{5}{9}+169\times \frac{4}{36}
Reduce the fraction \frac{720}{1296} to lowest terms by extracting and canceling out 144.
\frac{1653}{72}+\frac{40}{72}+169\times \frac{4}{36}
Least common multiple of 24 and 9 is 72. Convert \frac{551}{24} and \frac{5}{9} to fractions with denominator 72.
\frac{1653+40}{72}+169\times \frac{4}{36}
Since \frac{1653}{72} and \frac{40}{72} have the same denominator, add them by adding their numerators.
\frac{1693}{72}+169\times \frac{4}{36}
Add 1653 and 40 to get 1693.
\frac{1693}{72}+169\times \frac{1}{9}
Reduce the fraction \frac{4}{36} to lowest terms by extracting and canceling out 4.
\frac{1693}{72}+\frac{169}{9}
Multiply 169 and \frac{1}{9} to get \frac{169}{9}.
\frac{1693}{72}+\frac{1352}{72}
Least common multiple of 72 and 9 is 72. Convert \frac{1693}{72} and \frac{169}{9} to fractions with denominator 72.
\frac{1693+1352}{72}
Since \frac{1693}{72} and \frac{1352}{72} have the same denominator, add them by adding their numerators.
\frac{3045}{72}
Add 1693 and 1352 to get 3045.
\frac{1015}{24}
Reduce the fraction \frac{3045}{72} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}