Solve for x
x=\frac{-\sqrt{5035}-496}{501}\approx -1.131652163
x=\frac{\sqrt{5035}-496}{501}\approx -0.848387757
Graph
Share
Copied to clipboard
100.2\left(x+1\right)^{2}=\left(x+1\right)\times 2+2
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
100.2\left(x^{2}+2x+1\right)=\left(x+1\right)\times 2+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
100.2x^{2}+200.4x+100.2=\left(x+1\right)\times 2+2
Use the distributive property to multiply 100.2 by x^{2}+2x+1.
100.2x^{2}+200.4x+100.2=2x+2+2
Use the distributive property to multiply x+1 by 2.
100.2x^{2}+200.4x+100.2=2x+4
Add 2 and 2 to get 4.
100.2x^{2}+200.4x+100.2-2x=4
Subtract 2x from both sides.
100.2x^{2}+198.4x+100.2=4
Combine 200.4x and -2x to get 198.4x.
100.2x^{2}+198.4x+100.2-4=0
Subtract 4 from both sides.
100.2x^{2}+198.4x+96.2=0
Subtract 4 from 100.2 to get 96.2.
x=\frac{-198.4±\sqrt{198.4^{2}-4\times 100.2\times 96.2}}{2\times 100.2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100.2 for a, 198.4 for b, and 96.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-198.4±\sqrt{39362.56-4\times 100.2\times 96.2}}{2\times 100.2}
Square 198.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-198.4±\sqrt{39362.56-400.8\times 96.2}}{2\times 100.2}
Multiply -4 times 100.2.
x=\frac{-198.4±\sqrt{\frac{984064-963924}{25}}}{2\times 100.2}
Multiply -400.8 times 96.2 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-198.4±\sqrt{805.6}}{2\times 100.2}
Add 39362.56 to -38556.96 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-198.4±\frac{2\sqrt{5035}}{5}}{2\times 100.2}
Take the square root of 805.6.
x=\frac{-198.4±\frac{2\sqrt{5035}}{5}}{200.4}
Multiply 2 times 100.2.
x=\frac{2\sqrt{5035}-992}{5\times 200.4}
Now solve the equation x=\frac{-198.4±\frac{2\sqrt{5035}}{5}}{200.4} when ± is plus. Add -198.4 to \frac{2\sqrt{5035}}{5}.
x=\frac{\sqrt{5035}-496}{501}
Divide \frac{-992+2\sqrt{5035}}{5} by 200.4 by multiplying \frac{-992+2\sqrt{5035}}{5} by the reciprocal of 200.4.
x=\frac{-2\sqrt{5035}-992}{5\times 200.4}
Now solve the equation x=\frac{-198.4±\frac{2\sqrt{5035}}{5}}{200.4} when ± is minus. Subtract \frac{2\sqrt{5035}}{5} from -198.4.
x=\frac{-\sqrt{5035}-496}{501}
Divide \frac{-992-2\sqrt{5035}}{5} by 200.4 by multiplying \frac{-992-2\sqrt{5035}}{5} by the reciprocal of 200.4.
x=\frac{\sqrt{5035}-496}{501} x=\frac{-\sqrt{5035}-496}{501}
The equation is now solved.
100.2\left(x+1\right)^{2}=\left(x+1\right)\times 2+2
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
100.2\left(x^{2}+2x+1\right)=\left(x+1\right)\times 2+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
100.2x^{2}+200.4x+100.2=\left(x+1\right)\times 2+2
Use the distributive property to multiply 100.2 by x^{2}+2x+1.
100.2x^{2}+200.4x+100.2=2x+2+2
Use the distributive property to multiply x+1 by 2.
100.2x^{2}+200.4x+100.2=2x+4
Add 2 and 2 to get 4.
100.2x^{2}+200.4x+100.2-2x=4
Subtract 2x from both sides.
100.2x^{2}+198.4x+100.2=4
Combine 200.4x and -2x to get 198.4x.
100.2x^{2}+198.4x=4-100.2
Subtract 100.2 from both sides.
100.2x^{2}+198.4x=-96.2
Subtract 100.2 from 4 to get -96.2.
\frac{100.2x^{2}+198.4x}{100.2}=-\frac{96.2}{100.2}
Divide both sides of the equation by 100.2, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{198.4}{100.2}x=-\frac{96.2}{100.2}
Dividing by 100.2 undoes the multiplication by 100.2.
x^{2}+\frac{992}{501}x=-\frac{96.2}{100.2}
Divide 198.4 by 100.2 by multiplying 198.4 by the reciprocal of 100.2.
x^{2}+\frac{992}{501}x=-\frac{481}{501}
Divide -96.2 by 100.2 by multiplying -96.2 by the reciprocal of 100.2.
x^{2}+\frac{992}{501}x+\frac{496}{501}^{2}=-\frac{481}{501}+\frac{496}{501}^{2}
Divide \frac{992}{501}, the coefficient of the x term, by 2 to get \frac{496}{501}. Then add the square of \frac{496}{501} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{992}{501}x+\frac{246016}{251001}=-\frac{481}{501}+\frac{246016}{251001}
Square \frac{496}{501} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{992}{501}x+\frac{246016}{251001}=\frac{5035}{251001}
Add -\frac{481}{501} to \frac{246016}{251001} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{496}{501}\right)^{2}=\frac{5035}{251001}
Factor x^{2}+\frac{992}{501}x+\frac{246016}{251001}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{496}{501}\right)^{2}}=\sqrt{\frac{5035}{251001}}
Take the square root of both sides of the equation.
x+\frac{496}{501}=\frac{\sqrt{5035}}{501} x+\frac{496}{501}=-\frac{\sqrt{5035}}{501}
Simplify.
x=\frac{\sqrt{5035}-496}{501} x=\frac{-\sqrt{5035}-496}{501}
Subtract \frac{496}{501} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}