Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

100\left(0.8+x\right)^{2}=135.2
Multiply 0.8+x and 0.8+x to get \left(0.8+x\right)^{2}.
100\left(0.64+1.6x+x^{2}\right)=135.2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(0.8+x\right)^{2}.
64+160x+100x^{2}=135.2
Use the distributive property to multiply 100 by 0.64+1.6x+x^{2}.
64+160x+100x^{2}-135.2=0
Subtract 135.2 from both sides.
-71.2+160x+100x^{2}=0
Subtract 135.2 from 64 to get -71.2.
100x^{2}+160x-71.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-160±\sqrt{160^{2}-4\times 100\left(-71.2\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 160 for b, and -71.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 100\left(-71.2\right)}}{2\times 100}
Square 160.
x=\frac{-160±\sqrt{25600-400\left(-71.2\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-160±\sqrt{25600+28480}}{2\times 100}
Multiply -400 times -71.2.
x=\frac{-160±\sqrt{54080}}{2\times 100}
Add 25600 to 28480.
x=\frac{-160±104\sqrt{5}}{2\times 100}
Take the square root of 54080.
x=\frac{-160±104\sqrt{5}}{200}
Multiply 2 times 100.
x=\frac{104\sqrt{5}-160}{200}
Now solve the equation x=\frac{-160±104\sqrt{5}}{200} when ± is plus. Add -160 to 104\sqrt{5}.
x=\frac{13\sqrt{5}}{25}-\frac{4}{5}
Divide -160+104\sqrt{5} by 200.
x=\frac{-104\sqrt{5}-160}{200}
Now solve the equation x=\frac{-160±104\sqrt{5}}{200} when ± is minus. Subtract 104\sqrt{5} from -160.
x=-\frac{13\sqrt{5}}{25}-\frac{4}{5}
Divide -160-104\sqrt{5} by 200.
x=\frac{13\sqrt{5}}{25}-\frac{4}{5} x=-\frac{13\sqrt{5}}{25}-\frac{4}{5}
The equation is now solved.
100\left(0.8+x\right)^{2}=135.2
Multiply 0.8+x and 0.8+x to get \left(0.8+x\right)^{2}.
100\left(0.64+1.6x+x^{2}\right)=135.2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(0.8+x\right)^{2}.
64+160x+100x^{2}=135.2
Use the distributive property to multiply 100 by 0.64+1.6x+x^{2}.
160x+100x^{2}=135.2-64
Subtract 64 from both sides.
160x+100x^{2}=71.2
Subtract 64 from 135.2 to get 71.2.
100x^{2}+160x=71.2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{100x^{2}+160x}{100}=\frac{71.2}{100}
Divide both sides by 100.
x^{2}+\frac{160}{100}x=\frac{71.2}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+\frac{8}{5}x=\frac{71.2}{100}
Reduce the fraction \frac{160}{100} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{8}{5}x=0.712
Divide 71.2 by 100.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=0.712+\left(\frac{4}{5}\right)^{2}
Divide \frac{8}{5}, the coefficient of the x term, by 2 to get \frac{4}{5}. Then add the square of \frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{5}x+\frac{16}{25}=0.712+\frac{16}{25}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{169}{125}
Add 0.712 to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{5}\right)^{2}=\frac{169}{125}
Factor x^{2}+\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{169}{125}}
Take the square root of both sides of the equation.
x+\frac{4}{5}=\frac{13\sqrt{5}}{25} x+\frac{4}{5}=-\frac{13\sqrt{5}}{25}
Simplify.
x=\frac{13\sqrt{5}}{25}-\frac{4}{5} x=-\frac{13\sqrt{5}}{25}-\frac{4}{5}
Subtract \frac{4}{5} from both sides of the equation.