Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

100x^{2}-10x=-\frac{1}{4}
Subtract 10x from both sides.
100x^{2}-10x+\frac{1}{4}=0
Add \frac{1}{4} to both sides.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 100\times \frac{1}{4}}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, -10 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 100\times \frac{1}{4}}}{2\times 100}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-400\times \frac{1}{4}}}{2\times 100}
Multiply -4 times 100.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times 100}
Multiply -400 times \frac{1}{4}.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times 100}
Add 100 to -100.
x=-\frac{-10}{2\times 100}
Take the square root of 0.
x=\frac{10}{2\times 100}
The opposite of -10 is 10.
x=\frac{10}{200}
Multiply 2 times 100.
x=\frac{1}{20}
Reduce the fraction \frac{10}{200} to lowest terms by extracting and canceling out 10.
100x^{2}-10x=-\frac{1}{4}
Subtract 10x from both sides.
\frac{100x^{2}-10x}{100}=-\frac{\frac{1}{4}}{100}
Divide both sides by 100.
x^{2}+\left(-\frac{10}{100}\right)x=-\frac{\frac{1}{4}}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}-\frac{1}{10}x=-\frac{\frac{1}{4}}{100}
Reduce the fraction \frac{-10}{100} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{1}{10}x=-\frac{1}{400}
Divide -\frac{1}{4} by 100.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=-\frac{1}{400}+\left(-\frac{1}{20}\right)^{2}
Divide -\frac{1}{10}, the coefficient of the x term, by 2 to get -\frac{1}{20}. Then add the square of -\frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{-1+1}{400}
Square -\frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{10}x+\frac{1}{400}=0
Add -\frac{1}{400} to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{20}\right)^{2}=0
Factor x^{2}-\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{20}=0 x-\frac{1}{20}=0
Simplify.
x=\frac{1}{20} x=\frac{1}{20}
Add \frac{1}{20} to both sides of the equation.
x=\frac{1}{20}
The equation is now solved. Solutions are the same.