Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

100-4\left(6-3m\right)\left(28+9m\right)>0
Multiply -1 and 4 to get -4.
100+\left(-24+12m\right)\left(28+9m\right)>0
Use the distributive property to multiply -4 by 6-3m.
100-672+120m+108m^{2}>0
Use the distributive property to multiply -24+12m by 28+9m and combine like terms.
-572+120m+108m^{2}>0
Subtract 672 from 100 to get -572.
-572+120m+108m^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-120±\sqrt{120^{2}-4\times 108\left(-572\right)}}{2\times 108}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 108 for a, 120 for b, and -572 for c in the quadratic formula.
m=\frac{-120±24\sqrt{454}}{216}
Do the calculations.
m=\frac{\sqrt{454}-5}{9} m=\frac{-\sqrt{454}-5}{9}
Solve the equation m=\frac{-120±24\sqrt{454}}{216} when ± is plus and when ± is minus.
108\left(m-\frac{\sqrt{454}-5}{9}\right)\left(m-\frac{-\sqrt{454}-5}{9}\right)>0
Rewrite the inequality by using the obtained solutions.
m-\frac{\sqrt{454}-5}{9}<0 m-\frac{-\sqrt{454}-5}{9}<0
For the product to be positive, m-\frac{\sqrt{454}-5}{9} and m-\frac{-\sqrt{454}-5}{9} have to be both negative or both positive. Consider the case when m-\frac{\sqrt{454}-5}{9} and m-\frac{-\sqrt{454}-5}{9} are both negative.
m<\frac{-\sqrt{454}-5}{9}
The solution satisfying both inequalities is m<\frac{-\sqrt{454}-5}{9}.
m-\frac{-\sqrt{454}-5}{9}>0 m-\frac{\sqrt{454}-5}{9}>0
Consider the case when m-\frac{\sqrt{454}-5}{9} and m-\frac{-\sqrt{454}-5}{9} are both positive.
m>\frac{\sqrt{454}-5}{9}
The solution satisfying both inequalities is m>\frac{\sqrt{454}-5}{9}.
m<\frac{-\sqrt{454}-5}{9}\text{; }m>\frac{\sqrt{454}-5}{9}
The final solution is the union of the obtained solutions.