Solve for x
x=-2
x = \frac{94}{25} = 3\frac{19}{25} = 3.76
Graph
Share
Copied to clipboard
25x^{2}-44x-188=0
Divide both sides by 4.
a+b=-44 ab=25\left(-188\right)=-4700
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx-188. To find a and b, set up a system to be solved.
1,-4700 2,-2350 4,-1175 5,-940 10,-470 20,-235 25,-188 47,-100 50,-94
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4700.
1-4700=-4699 2-2350=-2348 4-1175=-1171 5-940=-935 10-470=-460 20-235=-215 25-188=-163 47-100=-53 50-94=-44
Calculate the sum for each pair.
a=-94 b=50
The solution is the pair that gives sum -44.
\left(25x^{2}-94x\right)+\left(50x-188\right)
Rewrite 25x^{2}-44x-188 as \left(25x^{2}-94x\right)+\left(50x-188\right).
x\left(25x-94\right)+2\left(25x-94\right)
Factor out x in the first and 2 in the second group.
\left(25x-94\right)\left(x+2\right)
Factor out common term 25x-94 by using distributive property.
x=\frac{94}{25} x=-2
To find equation solutions, solve 25x-94=0 and x+2=0.
100x^{2}-176x-752=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-176\right)±\sqrt{\left(-176\right)^{2}-4\times 100\left(-752\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, -176 for b, and -752 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-176\right)±\sqrt{30976-4\times 100\left(-752\right)}}{2\times 100}
Square -176.
x=\frac{-\left(-176\right)±\sqrt{30976-400\left(-752\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-\left(-176\right)±\sqrt{30976+300800}}{2\times 100}
Multiply -400 times -752.
x=\frac{-\left(-176\right)±\sqrt{331776}}{2\times 100}
Add 30976 to 300800.
x=\frac{-\left(-176\right)±576}{2\times 100}
Take the square root of 331776.
x=\frac{176±576}{2\times 100}
The opposite of -176 is 176.
x=\frac{176±576}{200}
Multiply 2 times 100.
x=\frac{752}{200}
Now solve the equation x=\frac{176±576}{200} when ± is plus. Add 176 to 576.
x=\frac{94}{25}
Reduce the fraction \frac{752}{200} to lowest terms by extracting and canceling out 8.
x=-\frac{400}{200}
Now solve the equation x=\frac{176±576}{200} when ± is minus. Subtract 576 from 176.
x=-2
Divide -400 by 200.
x=\frac{94}{25} x=-2
The equation is now solved.
100x^{2}-176x-752=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
100x^{2}-176x-752-\left(-752\right)=-\left(-752\right)
Add 752 to both sides of the equation.
100x^{2}-176x=-\left(-752\right)
Subtracting -752 from itself leaves 0.
100x^{2}-176x=752
Subtract -752 from 0.
\frac{100x^{2}-176x}{100}=\frac{752}{100}
Divide both sides by 100.
x^{2}+\left(-\frac{176}{100}\right)x=\frac{752}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}-\frac{44}{25}x=\frac{752}{100}
Reduce the fraction \frac{-176}{100} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{44}{25}x=\frac{188}{25}
Reduce the fraction \frac{752}{100} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{44}{25}x+\left(-\frac{22}{25}\right)^{2}=\frac{188}{25}+\left(-\frac{22}{25}\right)^{2}
Divide -\frac{44}{25}, the coefficient of the x term, by 2 to get -\frac{22}{25}. Then add the square of -\frac{22}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{44}{25}x+\frac{484}{625}=\frac{188}{25}+\frac{484}{625}
Square -\frac{22}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{44}{25}x+\frac{484}{625}=\frac{5184}{625}
Add \frac{188}{25} to \frac{484}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{22}{25}\right)^{2}=\frac{5184}{625}
Factor x^{2}-\frac{44}{25}x+\frac{484}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{22}{25}\right)^{2}}=\sqrt{\frac{5184}{625}}
Take the square root of both sides of the equation.
x-\frac{22}{25}=\frac{72}{25} x-\frac{22}{25}=-\frac{72}{25}
Simplify.
x=\frac{94}{25} x=-2
Add \frac{22}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}