Solve for x
x=\frac{7}{10}=0.7
x=\frac{9}{10}=0.9
Graph
Share
Copied to clipboard
100x^{2}-160x+63=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-160\right)±\sqrt{\left(-160\right)^{2}-4\times 100\times 63}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, -160 for b, and 63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-160\right)±\sqrt{25600-4\times 100\times 63}}{2\times 100}
Square -160.
x=\frac{-\left(-160\right)±\sqrt{25600-400\times 63}}{2\times 100}
Multiply -4 times 100.
x=\frac{-\left(-160\right)±\sqrt{25600-25200}}{2\times 100}
Multiply -400 times 63.
x=\frac{-\left(-160\right)±\sqrt{400}}{2\times 100}
Add 25600 to -25200.
x=\frac{-\left(-160\right)±20}{2\times 100}
Take the square root of 400.
x=\frac{160±20}{2\times 100}
The opposite of -160 is 160.
x=\frac{160±20}{200}
Multiply 2 times 100.
x=\frac{180}{200}
Now solve the equation x=\frac{160±20}{200} when ± is plus. Add 160 to 20.
x=\frac{9}{10}
Reduce the fraction \frac{180}{200} to lowest terms by extracting and canceling out 20.
x=\frac{140}{200}
Now solve the equation x=\frac{160±20}{200} when ± is minus. Subtract 20 from 160.
x=\frac{7}{10}
Reduce the fraction \frac{140}{200} to lowest terms by extracting and canceling out 20.
x=\frac{9}{10} x=\frac{7}{10}
The equation is now solved.
100x^{2}-160x+63=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
100x^{2}-160x+63-63=-63
Subtract 63 from both sides of the equation.
100x^{2}-160x=-63
Subtracting 63 from itself leaves 0.
\frac{100x^{2}-160x}{100}=-\frac{63}{100}
Divide both sides by 100.
x^{2}+\left(-\frac{160}{100}\right)x=-\frac{63}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}-\frac{8}{5}x=-\frac{63}{100}
Reduce the fraction \frac{-160}{100} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{63}{100}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{63}{100}+\frac{16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{1}{100}
Add -\frac{63}{100} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=\frac{1}{100}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{1}{100}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{1}{10} x-\frac{4}{5}=-\frac{1}{10}
Simplify.
x=\frac{9}{10} x=\frac{7}{10}
Add \frac{4}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}