Solve for x (complex solution)
x=\frac{-9+27\sqrt{11}i}{100}\approx -0.09+0.895488693i
x=\frac{-27\sqrt{11}i-9}{100}\approx -0.09-0.895488693i
Graph
Share
Copied to clipboard
100x^{2}+18x+81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 100\times 81}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 18 for b, and 81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 100\times 81}}{2\times 100}
Square 18.
x=\frac{-18±\sqrt{324-400\times 81}}{2\times 100}
Multiply -4 times 100.
x=\frac{-18±\sqrt{324-32400}}{2\times 100}
Multiply -400 times 81.
x=\frac{-18±\sqrt{-32076}}{2\times 100}
Add 324 to -32400.
x=\frac{-18±54\sqrt{11}i}{2\times 100}
Take the square root of -32076.
x=\frac{-18±54\sqrt{11}i}{200}
Multiply 2 times 100.
x=\frac{-18+54\sqrt{11}i}{200}
Now solve the equation x=\frac{-18±54\sqrt{11}i}{200} when ± is plus. Add -18 to 54i\sqrt{11}.
x=\frac{-9+27\sqrt{11}i}{100}
Divide -18+54i\sqrt{11} by 200.
x=\frac{-54\sqrt{11}i-18}{200}
Now solve the equation x=\frac{-18±54\sqrt{11}i}{200} when ± is minus. Subtract 54i\sqrt{11} from -18.
x=\frac{-27\sqrt{11}i-9}{100}
Divide -18-54i\sqrt{11} by 200.
x=\frac{-9+27\sqrt{11}i}{100} x=\frac{-27\sqrt{11}i-9}{100}
The equation is now solved.
100x^{2}+18x+81=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
100x^{2}+18x+81-81=-81
Subtract 81 from both sides of the equation.
100x^{2}+18x=-81
Subtracting 81 from itself leaves 0.
\frac{100x^{2}+18x}{100}=-\frac{81}{100}
Divide both sides by 100.
x^{2}+\frac{18}{100}x=-\frac{81}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+\frac{9}{50}x=-\frac{81}{100}
Reduce the fraction \frac{18}{100} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{50}x+\left(\frac{9}{100}\right)^{2}=-\frac{81}{100}+\left(\frac{9}{100}\right)^{2}
Divide \frac{9}{50}, the coefficient of the x term, by 2 to get \frac{9}{100}. Then add the square of \frac{9}{100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{50}x+\frac{81}{10000}=-\frac{81}{100}+\frac{81}{10000}
Square \frac{9}{100} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{50}x+\frac{81}{10000}=-\frac{8019}{10000}
Add -\frac{81}{100} to \frac{81}{10000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{100}\right)^{2}=-\frac{8019}{10000}
Factor x^{2}+\frac{9}{50}x+\frac{81}{10000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{100}\right)^{2}}=\sqrt{-\frac{8019}{10000}}
Take the square root of both sides of the equation.
x+\frac{9}{100}=\frac{27\sqrt{11}i}{100} x+\frac{9}{100}=-\frac{27\sqrt{11}i}{100}
Simplify.
x=\frac{-9+27\sqrt{11}i}{100} x=\frac{-27\sqrt{11}i-9}{100}
Subtract \frac{9}{100} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}