Evaluate
\frac{10}{7}\approx 1.428571429
Factor
\frac{2 \cdot 5}{7} = 1\frac{3}{7} = 1.4285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{70)}\phantom{1}\\70\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{70)}0\phantom{2}\\70\overline{)100}\\\end{array}
Since 1 is less than 70, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{70)}0\phantom{3}\\70\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{70)}00\phantom{4}\\70\overline{)100}\\\end{array}
Since 10 is less than 70, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{70)}00\phantom{5}\\70\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{70)}001\phantom{6}\\70\overline{)100}\\\phantom{70)}\underline{\phantom{9}70\phantom{}}\\\phantom{70)9}30\\\end{array}
Find closest multiple of 70 to 100. We see that 1 \times 70 = 70 is the nearest. Now subtract 70 from 100 to get reminder 30. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }30
Since 30 is less than 70, stop the division. The reminder is 30. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}