Evaluate
\frac{25}{12}\approx 2.083333333
Factor
\frac{5 ^ {2}}{2 ^ {2} \cdot 3} = 2\frac{1}{12} = 2.0833333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)100}\\\end{array}
Since 1 is less than 48, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)100}\\\end{array}
Since 10 is less than 48, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{48)}002\phantom{6}\\48\overline{)100}\\\phantom{48)}\underline{\phantom{9}96\phantom{}}\\\phantom{48)99}4\\\end{array}
Find closest multiple of 48 to 100. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 100 to get reminder 4. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }4
Since 4 is less than 48, stop the division. The reminder is 4. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}