Evaluate
\frac{20}{7}\approx 2.857142857
Factor
\frac{2 ^ {2} \cdot 5}{7} = 2\frac{6}{7} = 2.857142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)100}\\\end{array}
Since 1 is less than 35, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)100}\\\end{array}
Since 10 is less than 35, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{35)}002\phantom{6}\\35\overline{)100}\\\phantom{35)}\underline{\phantom{9}70\phantom{}}\\\phantom{35)9}30\\\end{array}
Find closest multiple of 35 to 100. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 100 to get reminder 30. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }30
Since 30 is less than 35, stop the division. The reminder is 30. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}