Evaluate
\frac{40}{3}\approx 13.333333333
Factor
\frac{2 ^ {3} \cdot 5}{3} = 13\frac{1}{3} = 13.333333333333334
Share
Copied to clipboard
\frac{100}{7+\frac{1}{2}}
Add 6 and 1 to get 7.
\frac{100}{\frac{14}{2}+\frac{1}{2}}
Convert 7 to fraction \frac{14}{2}.
\frac{100}{\frac{14+1}{2}}
Since \frac{14}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{100}{\frac{15}{2}}
Add 14 and 1 to get 15.
100\times \frac{2}{15}
Divide 100 by \frac{15}{2} by multiplying 100 by the reciprocal of \frac{15}{2}.
\frac{100\times 2}{15}
Express 100\times \frac{2}{15} as a single fraction.
\frac{200}{15}
Multiply 100 and 2 to get 200.
\frac{40}{3}
Reduce the fraction \frac{200}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}