100 \cdot 0,2 ^ { 3 } + 0,3 ^ { 2 } : ( \frac { 17 } { 52 } + \frac { 8 } { 65 } ) =
Evaluate
0
Factor
0
Share
Copied to clipboard
0\times 2^{3}+\frac{0\times 3^{2}}{\frac{17}{52}+\frac{8}{65}}
Multiply 100 and 0 to get 0.
0\times 8+\frac{0\times 3^{2}}{\frac{17}{52}+\frac{8}{65}}
Calculate 2 to the power of 3 and get 8.
0+\frac{0\times 3^{2}}{\frac{17}{52}+\frac{8}{65}}
Multiply 0 and 8 to get 0.
0+\frac{0\times 9}{\frac{17}{52}+\frac{8}{65}}
Calculate 3 to the power of 2 and get 9.
0+\frac{0}{\frac{17}{52}+\frac{8}{65}}
Multiply 0 and 9 to get 0.
0+\frac{0}{\frac{85}{260}+\frac{32}{260}}
Least common multiple of 52 and 65 is 260. Convert \frac{17}{52} and \frac{8}{65} to fractions with denominator 260.
0+\frac{0}{\frac{85+32}{260}}
Since \frac{85}{260} and \frac{32}{260} have the same denominator, add them by adding their numerators.
0+\frac{0}{\frac{117}{260}}
Add 85 and 32 to get 117.
0+\frac{0}{\frac{9}{20}}
Reduce the fraction \frac{117}{260} to lowest terms by extracting and canceling out 13.
0+0
Zero divided by any non-zero number gives zero.
0
Add 0 and 0 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}