Solve for y
y=-\frac{\sqrt{2854}}{50}-\frac{24}{25}\approx -2.028456831
y=\frac{\sqrt{2854}}{50}-\frac{24}{25}\approx 0.108456831
Graph
Share
Copied to clipboard
100\left(y+1\right)^{2}=\left(y+1\right)\times 8+8+106
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)^{2}, the least common multiple of 1+y,\left(1+y\right)^{2}.
100\left(y^{2}+2y+1\right)=\left(y+1\right)\times 8+8+106
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
100y^{2}+200y+100=\left(y+1\right)\times 8+8+106
Use the distributive property to multiply 100 by y^{2}+2y+1.
100y^{2}+200y+100=8y+8+8+106
Use the distributive property to multiply y+1 by 8.
100y^{2}+200y+100=8y+16+106
Add 8 and 8 to get 16.
100y^{2}+200y+100=8y+122
Add 16 and 106 to get 122.
100y^{2}+200y+100-8y=122
Subtract 8y from both sides.
100y^{2}+192y+100=122
Combine 200y and -8y to get 192y.
100y^{2}+192y+100-122=0
Subtract 122 from both sides.
100y^{2}+192y-22=0
Subtract 122 from 100 to get -22.
y=\frac{-192±\sqrt{192^{2}-4\times 100\left(-22\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 192 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-192±\sqrt{36864-4\times 100\left(-22\right)}}{2\times 100}
Square 192.
y=\frac{-192±\sqrt{36864-400\left(-22\right)}}{2\times 100}
Multiply -4 times 100.
y=\frac{-192±\sqrt{36864+8800}}{2\times 100}
Multiply -400 times -22.
y=\frac{-192±\sqrt{45664}}{2\times 100}
Add 36864 to 8800.
y=\frac{-192±4\sqrt{2854}}{2\times 100}
Take the square root of 45664.
y=\frac{-192±4\sqrt{2854}}{200}
Multiply 2 times 100.
y=\frac{4\sqrt{2854}-192}{200}
Now solve the equation y=\frac{-192±4\sqrt{2854}}{200} when ± is plus. Add -192 to 4\sqrt{2854}.
y=\frac{\sqrt{2854}}{50}-\frac{24}{25}
Divide -192+4\sqrt{2854} by 200.
y=\frac{-4\sqrt{2854}-192}{200}
Now solve the equation y=\frac{-192±4\sqrt{2854}}{200} when ± is minus. Subtract 4\sqrt{2854} from -192.
y=-\frac{\sqrt{2854}}{50}-\frac{24}{25}
Divide -192-4\sqrt{2854} by 200.
y=\frac{\sqrt{2854}}{50}-\frac{24}{25} y=-\frac{\sqrt{2854}}{50}-\frac{24}{25}
The equation is now solved.
100\left(y+1\right)^{2}=\left(y+1\right)\times 8+8+106
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)^{2}, the least common multiple of 1+y,\left(1+y\right)^{2}.
100\left(y^{2}+2y+1\right)=\left(y+1\right)\times 8+8+106
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
100y^{2}+200y+100=\left(y+1\right)\times 8+8+106
Use the distributive property to multiply 100 by y^{2}+2y+1.
100y^{2}+200y+100=8y+8+8+106
Use the distributive property to multiply y+1 by 8.
100y^{2}+200y+100=8y+16+106
Add 8 and 8 to get 16.
100y^{2}+200y+100=8y+122
Add 16 and 106 to get 122.
100y^{2}+200y+100-8y=122
Subtract 8y from both sides.
100y^{2}+192y+100=122
Combine 200y and -8y to get 192y.
100y^{2}+192y=122-100
Subtract 100 from both sides.
100y^{2}+192y=22
Subtract 100 from 122 to get 22.
\frac{100y^{2}+192y}{100}=\frac{22}{100}
Divide both sides by 100.
y^{2}+\frac{192}{100}y=\frac{22}{100}
Dividing by 100 undoes the multiplication by 100.
y^{2}+\frac{48}{25}y=\frac{22}{100}
Reduce the fraction \frac{192}{100} to lowest terms by extracting and canceling out 4.
y^{2}+\frac{48}{25}y=\frac{11}{50}
Reduce the fraction \frac{22}{100} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{48}{25}y+\left(\frac{24}{25}\right)^{2}=\frac{11}{50}+\left(\frac{24}{25}\right)^{2}
Divide \frac{48}{25}, the coefficient of the x term, by 2 to get \frac{24}{25}. Then add the square of \frac{24}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{48}{25}y+\frac{576}{625}=\frac{11}{50}+\frac{576}{625}
Square \frac{24}{25} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{48}{25}y+\frac{576}{625}=\frac{1427}{1250}
Add \frac{11}{50} to \frac{576}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{24}{25}\right)^{2}=\frac{1427}{1250}
Factor y^{2}+\frac{48}{25}y+\frac{576}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{24}{25}\right)^{2}}=\sqrt{\frac{1427}{1250}}
Take the square root of both sides of the equation.
y+\frac{24}{25}=\frac{\sqrt{2854}}{50} y+\frac{24}{25}=-\frac{\sqrt{2854}}{50}
Simplify.
y=\frac{\sqrt{2854}}{50}-\frac{24}{25} y=-\frac{\sqrt{2854}}{50}-\frac{24}{25}
Subtract \frac{24}{25} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}