Solve for x
x=1000\sqrt{5}+5000\approx 7236.0679775
x=5000-1000\sqrt{5}\approx 2763.9320225
Graph
Share
Copied to clipboard
100=\frac{5}{1000000}x\left(10000-x\right)
Calculate 10 to the power of 6 and get 1000000.
100=\frac{1}{200000}x\left(10000-x\right)
Reduce the fraction \frac{5}{1000000} to lowest terms by extracting and canceling out 5.
100=\frac{1}{200000}x\times 10000+\frac{1}{200000}x\left(-1\right)x
Use the distributive property to multiply \frac{1}{200000}x by 10000-x.
100=\frac{1}{200000}x\times 10000+\frac{1}{200000}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
100=\frac{10000}{200000}x+\frac{1}{200000}x^{2}\left(-1\right)
Multiply \frac{1}{200000} and 10000 to get \frac{10000}{200000}.
100=\frac{1}{20}x+\frac{1}{200000}x^{2}\left(-1\right)
Reduce the fraction \frac{10000}{200000} to lowest terms by extracting and canceling out 10000.
100=\frac{1}{20}x-\frac{1}{200000}x^{2}
Multiply \frac{1}{200000} and -1 to get -\frac{1}{200000}.
\frac{1}{20}x-\frac{1}{200000}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
\frac{1}{20}x-\frac{1}{200000}x^{2}-100=0
Subtract 100 from both sides.
-\frac{1}{200000}x^{2}+\frac{1}{20}x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{20}±\sqrt{\left(\frac{1}{20}\right)^{2}-4\left(-\frac{1}{200000}\right)\left(-100\right)}}{2\left(-\frac{1}{200000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{200000} for a, \frac{1}{20} for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{20}±\sqrt{\frac{1}{400}-4\left(-\frac{1}{200000}\right)\left(-100\right)}}{2\left(-\frac{1}{200000}\right)}
Square \frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{20}±\sqrt{\frac{1}{400}+\frac{1}{50000}\left(-100\right)}}{2\left(-\frac{1}{200000}\right)}
Multiply -4 times -\frac{1}{200000}.
x=\frac{-\frac{1}{20}±\sqrt{\frac{1}{400}-\frac{1}{500}}}{2\left(-\frac{1}{200000}\right)}
Multiply \frac{1}{50000} times -100.
x=\frac{-\frac{1}{20}±\sqrt{\frac{1}{2000}}}{2\left(-\frac{1}{200000}\right)}
Add \frac{1}{400} to -\frac{1}{500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{20}±\frac{\sqrt{5}}{100}}{2\left(-\frac{1}{200000}\right)}
Take the square root of \frac{1}{2000}.
x=\frac{-\frac{1}{20}±\frac{\sqrt{5}}{100}}{-\frac{1}{100000}}
Multiply 2 times -\frac{1}{200000}.
x=\frac{\frac{\sqrt{5}}{100}-\frac{1}{20}}{-\frac{1}{100000}}
Now solve the equation x=\frac{-\frac{1}{20}±\frac{\sqrt{5}}{100}}{-\frac{1}{100000}} when ± is plus. Add -\frac{1}{20} to \frac{\sqrt{5}}{100}.
x=5000-1000\sqrt{5}
Divide -\frac{1}{20}+\frac{\sqrt{5}}{100} by -\frac{1}{100000} by multiplying -\frac{1}{20}+\frac{\sqrt{5}}{100} by the reciprocal of -\frac{1}{100000}.
x=\frac{-\frac{\sqrt{5}}{100}-\frac{1}{20}}{-\frac{1}{100000}}
Now solve the equation x=\frac{-\frac{1}{20}±\frac{\sqrt{5}}{100}}{-\frac{1}{100000}} when ± is minus. Subtract \frac{\sqrt{5}}{100} from -\frac{1}{20}.
x=1000\sqrt{5}+5000
Divide -\frac{1}{20}-\frac{\sqrt{5}}{100} by -\frac{1}{100000} by multiplying -\frac{1}{20}-\frac{\sqrt{5}}{100} by the reciprocal of -\frac{1}{100000}.
x=5000-1000\sqrt{5} x=1000\sqrt{5}+5000
The equation is now solved.
100=\frac{5}{1000000}x\left(10000-x\right)
Calculate 10 to the power of 6 and get 1000000.
100=\frac{1}{200000}x\left(10000-x\right)
Reduce the fraction \frac{5}{1000000} to lowest terms by extracting and canceling out 5.
100=\frac{1}{200000}x\times 10000+\frac{1}{200000}x\left(-1\right)x
Use the distributive property to multiply \frac{1}{200000}x by 10000-x.
100=\frac{1}{200000}x\times 10000+\frac{1}{200000}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
100=\frac{10000}{200000}x+\frac{1}{200000}x^{2}\left(-1\right)
Multiply \frac{1}{200000} and 10000 to get \frac{10000}{200000}.
100=\frac{1}{20}x+\frac{1}{200000}x^{2}\left(-1\right)
Reduce the fraction \frac{10000}{200000} to lowest terms by extracting and canceling out 10000.
100=\frac{1}{20}x-\frac{1}{200000}x^{2}
Multiply \frac{1}{200000} and -1 to get -\frac{1}{200000}.
\frac{1}{20}x-\frac{1}{200000}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{200000}x^{2}+\frac{1}{20}x=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{200000}x^{2}+\frac{1}{20}x}{-\frac{1}{200000}}=\frac{100}{-\frac{1}{200000}}
Multiply both sides by -200000.
x^{2}+\frac{\frac{1}{20}}{-\frac{1}{200000}}x=\frac{100}{-\frac{1}{200000}}
Dividing by -\frac{1}{200000} undoes the multiplication by -\frac{1}{200000}.
x^{2}-10000x=\frac{100}{-\frac{1}{200000}}
Divide \frac{1}{20} by -\frac{1}{200000} by multiplying \frac{1}{20} by the reciprocal of -\frac{1}{200000}.
x^{2}-10000x=-20000000
Divide 100 by -\frac{1}{200000} by multiplying 100 by the reciprocal of -\frac{1}{200000}.
x^{2}-10000x+\left(-5000\right)^{2}=-20000000+\left(-5000\right)^{2}
Divide -10000, the coefficient of the x term, by 2 to get -5000. Then add the square of -5000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10000x+25000000=-20000000+25000000
Square -5000.
x^{2}-10000x+25000000=5000000
Add -20000000 to 25000000.
\left(x-5000\right)^{2}=5000000
Factor x^{2}-10000x+25000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5000\right)^{2}}=\sqrt{5000000}
Take the square root of both sides of the equation.
x-5000=1000\sqrt{5} x-5000=-1000\sqrt{5}
Simplify.
x=1000\sqrt{5}+5000 x=5000-1000\sqrt{5}
Add 5000 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}