Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

5t+2t^{2}=100
Swap sides so that all variable terms are on the left hand side.
5t+2t^{2}-100=0
Subtract 100 from both sides.
2t^{2}+5t-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\times 2\left(-100\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\times 2\left(-100\right)}}{2\times 2}
Square 5.
t=\frac{-5±\sqrt{25-8\left(-100\right)}}{2\times 2}
Multiply -4 times 2.
t=\frac{-5±\sqrt{25+800}}{2\times 2}
Multiply -8 times -100.
t=\frac{-5±\sqrt{825}}{2\times 2}
Add 25 to 800.
t=\frac{-5±5\sqrt{33}}{2\times 2}
Take the square root of 825.
t=\frac{-5±5\sqrt{33}}{4}
Multiply 2 times 2.
t=\frac{5\sqrt{33}-5}{4}
Now solve the equation t=\frac{-5±5\sqrt{33}}{4} when ± is plus. Add -5 to 5\sqrt{33}.
t=\frac{-5\sqrt{33}-5}{4}
Now solve the equation t=\frac{-5±5\sqrt{33}}{4} when ± is minus. Subtract 5\sqrt{33} from -5.
t=\frac{5\sqrt{33}-5}{4} t=\frac{-5\sqrt{33}-5}{4}
The equation is now solved.
5t+2t^{2}=100
Swap sides so that all variable terms are on the left hand side.
2t^{2}+5t=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2t^{2}+5t}{2}=\frac{100}{2}
Divide both sides by 2.
t^{2}+\frac{5}{2}t=\frac{100}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}+\frac{5}{2}t=50
Divide 100 by 2.
t^{2}+\frac{5}{2}t+\left(\frac{5}{4}\right)^{2}=50+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{5}{2}t+\frac{25}{16}=50+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{825}{16}
Add 50 to \frac{25}{16}.
\left(t+\frac{5}{4}\right)^{2}=\frac{825}{16}
Factor t^{2}+\frac{5}{2}t+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{4}\right)^{2}}=\sqrt{\frac{825}{16}}
Take the square root of both sides of the equation.
t+\frac{5}{4}=\frac{5\sqrt{33}}{4} t+\frac{5}{4}=-\frac{5\sqrt{33}}{4}
Simplify.
t=\frac{5\sqrt{33}-5}{4} t=\frac{-5\sqrt{33}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.