Evaluate
10.99285
Factor
\frac{23 \cdot 79 \cdot 11 ^ {2}}{2 ^ {5} \cdot 5 ^ {4}} = 10\frac{19857}{20000} = 10.99285
Share
Copied to clipboard
10.998-2.575\times \frac{0.02}{10}
Calculate the square root of 100 and get 10.
10.998-2.575\times \frac{2}{1000}
Expand \frac{0.02}{10} by multiplying both numerator and the denominator by 100.
10.998-2.575\times \frac{1}{500}
Reduce the fraction \frac{2}{1000} to lowest terms by extracting and canceling out 2.
10.998-\frac{103}{40}\times \frac{1}{500}
Convert decimal number 2.575 to fraction \frac{2575}{1000}. Reduce the fraction \frac{2575}{1000} to lowest terms by extracting and canceling out 25.
10.998-\frac{103\times 1}{40\times 500}
Multiply \frac{103}{40} times \frac{1}{500} by multiplying numerator times numerator and denominator times denominator.
10.998-\frac{103}{20000}
Do the multiplications in the fraction \frac{103\times 1}{40\times 500}.
\frac{5499}{500}-\frac{103}{20000}
Convert decimal number 10.998 to fraction \frac{10998}{1000}. Reduce the fraction \frac{10998}{1000} to lowest terms by extracting and canceling out 2.
\frac{219960}{20000}-\frac{103}{20000}
Least common multiple of 500 and 20000 is 20000. Convert \frac{5499}{500} and \frac{103}{20000} to fractions with denominator 20000.
\frac{219960-103}{20000}
Since \frac{219960}{20000} and \frac{103}{20000} have the same denominator, subtract them by subtracting their numerators.
\frac{219857}{20000}
Subtract 103 from 219960 to get 219857.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}