Verify
false
Share
Copied to clipboard
80-9-2\left(8\left(-\frac{9}{8}\right)-3\right)=16\left(-\frac{9}{8}-3\right)
Multiply both sides of the equation by 8, the least common multiple of 8,4.
71-2\left(8\left(-\frac{9}{8}\right)-3\right)=16\left(-\frac{9}{8}-3\right)
Subtract 9 from 80 to get 71.
71-2\left(-9-3\right)=16\left(-\frac{9}{8}-3\right)
Cancel out 8 and 8.
71-2\left(-12\right)=16\left(-\frac{9}{8}-3\right)
Subtract 3 from -9 to get -12.
71+24=16\left(-\frac{9}{8}-3\right)
Multiply -2 and -12 to get 24.
95=16\left(-\frac{9}{8}-3\right)
Add 71 and 24 to get 95.
95=16\left(-\frac{9}{8}-\frac{24}{8}\right)
Convert 3 to fraction \frac{24}{8}.
95=16\times \frac{-9-24}{8}
Since -\frac{9}{8} and \frac{24}{8} have the same denominator, subtract them by subtracting their numerators.
95=16\left(-\frac{33}{8}\right)
Subtract 24 from -9 to get -33.
95=\frac{16\left(-33\right)}{8}
Express 16\left(-\frac{33}{8}\right) as a single fraction.
95=\frac{-528}{8}
Multiply 16 and -33 to get -528.
95=-66
Divide -528 by 8 to get -66.
\text{false}
Compare 95 and -66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}