Solve for x
x=\frac{\sqrt{129}}{6}+\frac{1}{2}\approx 2.392969449
x=-\frac{\sqrt{129}}{6}+\frac{1}{2}\approx -1.392969449
Graph
Share
Copied to clipboard
-3x^{2}+3x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 3 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-3\right)\times 10}}{2\left(-3\right)}
Square 3.
x=\frac{-3±\sqrt{9+12\times 10}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-3±\sqrt{9+120}}{2\left(-3\right)}
Multiply 12 times 10.
x=\frac{-3±\sqrt{129}}{2\left(-3\right)}
Add 9 to 120.
x=\frac{-3±\sqrt{129}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{129}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{129}}{-6} when ± is plus. Add -3 to \sqrt{129}.
x=-\frac{\sqrt{129}}{6}+\frac{1}{2}
Divide -3+\sqrt{129} by -6.
x=\frac{-\sqrt{129}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{129}}{-6} when ± is minus. Subtract \sqrt{129} from -3.
x=\frac{\sqrt{129}}{6}+\frac{1}{2}
Divide -3-\sqrt{129} by -6.
x=-\frac{\sqrt{129}}{6}+\frac{1}{2} x=\frac{\sqrt{129}}{6}+\frac{1}{2}
The equation is now solved.
-3x^{2}+3x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+3x+10-10=-10
Subtract 10 from both sides of the equation.
-3x^{2}+3x=-10
Subtracting 10 from itself leaves 0.
\frac{-3x^{2}+3x}{-3}=-\frac{10}{-3}
Divide both sides by -3.
x^{2}+\frac{3}{-3}x=-\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-x=-\frac{10}{-3}
Divide 3 by -3.
x^{2}-x=\frac{10}{3}
Divide -10 by -3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{10}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{10}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{43}{12}
Add \frac{10}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{43}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{43}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{129}}{6} x-\frac{1}{2}=-\frac{\sqrt{129}}{6}
Simplify.
x=\frac{\sqrt{129}}{6}+\frac{1}{2} x=-\frac{\sqrt{129}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}