Solve for x
x=\frac{\sqrt{241}+121}{1800}\approx 0.075846764
Graph
Share
Copied to clipboard
\sqrt{25x}=10x\times 15-10
Subtract 10 from both sides of the equation.
\sqrt{25x}=150x-10
Multiply 10 and 15 to get 150.
\left(\sqrt{25x}\right)^{2}=\left(150x-10\right)^{2}
Square both sides of the equation.
25x=\left(150x-10\right)^{2}
Calculate \sqrt{25x} to the power of 2 and get 25x.
25x=22500x^{2}-3000x+100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(150x-10\right)^{2}.
25x-22500x^{2}=-3000x+100
Subtract 22500x^{2} from both sides.
25x-22500x^{2}+3000x=100
Add 3000x to both sides.
3025x-22500x^{2}=100
Combine 25x and 3000x to get 3025x.
3025x-22500x^{2}-100=0
Subtract 100 from both sides.
-22500x^{2}+3025x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3025±\sqrt{3025^{2}-4\left(-22500\right)\left(-100\right)}}{2\left(-22500\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -22500 for a, 3025 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3025±\sqrt{9150625-4\left(-22500\right)\left(-100\right)}}{2\left(-22500\right)}
Square 3025.
x=\frac{-3025±\sqrt{9150625+90000\left(-100\right)}}{2\left(-22500\right)}
Multiply -4 times -22500.
x=\frac{-3025±\sqrt{9150625-9000000}}{2\left(-22500\right)}
Multiply 90000 times -100.
x=\frac{-3025±\sqrt{150625}}{2\left(-22500\right)}
Add 9150625 to -9000000.
x=\frac{-3025±25\sqrt{241}}{2\left(-22500\right)}
Take the square root of 150625.
x=\frac{-3025±25\sqrt{241}}{-45000}
Multiply 2 times -22500.
x=\frac{25\sqrt{241}-3025}{-45000}
Now solve the equation x=\frac{-3025±25\sqrt{241}}{-45000} when ± is plus. Add -3025 to 25\sqrt{241}.
x=\frac{121-\sqrt{241}}{1800}
Divide -3025+25\sqrt{241} by -45000.
x=\frac{-25\sqrt{241}-3025}{-45000}
Now solve the equation x=\frac{-3025±25\sqrt{241}}{-45000} when ± is minus. Subtract 25\sqrt{241} from -3025.
x=\frac{\sqrt{241}+121}{1800}
Divide -3025-25\sqrt{241} by -45000.
x=\frac{121-\sqrt{241}}{1800} x=\frac{\sqrt{241}+121}{1800}
The equation is now solved.
10+\sqrt{25\times \frac{121-\sqrt{241}}{1800}}=10\times \frac{121-\sqrt{241}}{1800}\times 15
Substitute \frac{121-\sqrt{241}}{1800} for x in the equation 10+\sqrt{25x}=10x\times 15.
\frac{119}{12}+\frac{1}{12}\times 241^{\frac{1}{2}}=\frac{121}{12}-\frac{1}{12}\times 241^{\frac{1}{2}}
Simplify. The value x=\frac{121-\sqrt{241}}{1800} does not satisfy the equation.
10+\sqrt{25\times \frac{\sqrt{241}+121}{1800}}=10\times \frac{\sqrt{241}+121}{1800}\times 15
Substitute \frac{\sqrt{241}+121}{1800} for x in the equation 10+\sqrt{25x}=10x\times 15.
\frac{121}{12}+\frac{1}{12}\times 241^{\frac{1}{2}}=\frac{1}{12}\times 241^{\frac{1}{2}}+\frac{121}{12}
Simplify. The value x=\frac{\sqrt{241}+121}{1800} satisfies the equation.
x=\frac{\sqrt{241}+121}{1800}
Equation \sqrt{25x}=150x-10 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}