Factor
\left(2-x\right)\left(x-8\right)
Evaluate
\left(2-x\right)\left(x-8\right)
Graph
Share
Copied to clipboard
-x^{2}+10x-16
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=10 ab=-\left(-16\right)=16
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,16 2,8 4,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
a=8 b=2
The solution is the pair that gives sum 10.
\left(-x^{2}+8x\right)+\left(2x-16\right)
Rewrite -x^{2}+10x-16 as \left(-x^{2}+8x\right)+\left(2x-16\right).
-x\left(x-8\right)+2\left(x-8\right)
Factor out -x in the first and 2 in the second group.
\left(x-8\right)\left(-x+2\right)
Factor out common term x-8 by using distributive property.
-x^{2}+10x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 10.
x=\frac{-10±\sqrt{100+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-10±\sqrt{100-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-10±\sqrt{36}}{2\left(-1\right)}
Add 100 to -64.
x=\frac{-10±6}{2\left(-1\right)}
Take the square root of 36.
x=\frac{-10±6}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-10±6}{-2} when ± is plus. Add -10 to 6.
x=2
Divide -4 by -2.
x=-\frac{16}{-2}
Now solve the equation x=\frac{-10±6}{-2} when ± is minus. Subtract 6 from -10.
x=8
Divide -16 by -2.
-x^{2}+10x-16=-\left(x-2\right)\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 8 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}