Solve for x
x = \frac{27 \sqrt{10816049} - 61}{1000} \approx 88.735957836
x=\frac{-27\sqrt{10816049}-61}{1000}\approx -88.857957836
Graph
Share
Copied to clipboard
10x^{2}-78848.96+1.22x=0
Subtract 78840 from -8.96 to get -78848.96.
10x^{2}+1.22x-78848.96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1.22±\sqrt{1.22^{2}-4\times 10\left(-78848.96\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 1.22 for b, and -78848.96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.22±\sqrt{1.4884-4\times 10\left(-78848.96\right)}}{2\times 10}
Square 1.22 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.22±\sqrt{1.4884-40\left(-78848.96\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-1.22±\sqrt{1.4884+3153958.4}}{2\times 10}
Multiply -40 times -78848.96.
x=\frac{-1.22±\sqrt{3153959.8884}}{2\times 10}
Add 1.4884 to 3153958.4 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-1.22±\frac{27\sqrt{10816049}}{50}}{2\times 10}
Take the square root of 3153959.8884.
x=\frac{-1.22±\frac{27\sqrt{10816049}}{50}}{20}
Multiply 2 times 10.
x=\frac{27\sqrt{10816049}-61}{20\times 50}
Now solve the equation x=\frac{-1.22±\frac{27\sqrt{10816049}}{50}}{20} when ± is plus. Add -1.22 to \frac{27\sqrt{10816049}}{50}.
x=\frac{27\sqrt{10816049}-61}{1000}
Divide \frac{-61+27\sqrt{10816049}}{50} by 20.
x=\frac{-27\sqrt{10816049}-61}{20\times 50}
Now solve the equation x=\frac{-1.22±\frac{27\sqrt{10816049}}{50}}{20} when ± is minus. Subtract \frac{27\sqrt{10816049}}{50} from -1.22.
x=\frac{-27\sqrt{10816049}-61}{1000}
Divide \frac{-61-27\sqrt{10816049}}{50} by 20.
x=\frac{27\sqrt{10816049}-61}{1000} x=\frac{-27\sqrt{10816049}-61}{1000}
The equation is now solved.
10x^{2}-78848.96+1.22x=0
Subtract 78840 from -8.96 to get -78848.96.
10x^{2}+1.22x=78848.96
Add 78848.96 to both sides. Anything plus zero gives itself.
\frac{10x^{2}+1.22x}{10}=\frac{78848.96}{10}
Divide both sides by 10.
x^{2}+\frac{1.22}{10}x=\frac{78848.96}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+0.122x=\frac{78848.96}{10}
Divide 1.22 by 10.
x^{2}+0.122x=7884.896
Divide 78848.96 by 10.
x^{2}+0.122x+0.061^{2}=7884.896+0.061^{2}
Divide 0.122, the coefficient of the x term, by 2 to get 0.061. Then add the square of 0.061 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.122x+0.003721=7884.896+0.003721
Square 0.061 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.122x+0.003721=7884.899721
Add 7884.896 to 0.003721 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.061\right)^{2}=7884.899721
Factor x^{2}+0.122x+0.003721. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.061\right)^{2}}=\sqrt{7884.899721}
Take the square root of both sides of the equation.
x+0.061=\frac{27\sqrt{10816049}}{1000} x+0.061=-\frac{27\sqrt{10816049}}{1000}
Simplify.
x=\frac{27\sqrt{10816049}-61}{1000} x=\frac{-27\sqrt{10816049}-61}{1000}
Subtract 0.061 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}