Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
10x^{2}-6+14x^{2}=10x+50
Add 14x^{2} to both sides.
24x^{2}-6=10x+50
Combine 10x^{2} and 14x^{2} to get 24x^{2}.
24x^{2}-6-10x=50
Subtract 10x from both sides.
24x^{2}-6-10x-50=0
Subtract 50 from both sides.
24x^{2}-56-10x=0
Subtract 50 from -6 to get -56.
12x^{2}-28-5x=0
Divide both sides by 2.
12x^{2}-5x-28=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=12\left(-28\right)=-336
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
1,-336 2,-168 3,-112 4,-84 6,-56 7,-48 8,-42 12,-28 14,-24 16,-21
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -336.
1-336=-335 2-168=-166 3-112=-109 4-84=-80 6-56=-50 7-48=-41 8-42=-34 12-28=-16 14-24=-10 16-21=-5
Calculate the sum for each pair.
a=-21 b=16
The solution is the pair that gives sum -5.
\left(12x^{2}-21x\right)+\left(16x-28\right)
Rewrite 12x^{2}-5x-28 as \left(12x^{2}-21x\right)+\left(16x-28\right).
3x\left(4x-7\right)+4\left(4x-7\right)
Factor out 3x in the first and 4 in the second group.
\left(4x-7\right)\left(3x+4\right)
Factor out common term 4x-7 by using distributive property.
x=\frac{7}{4} x=-\frac{4}{3}
To find equation solutions, solve 4x-7=0 and 3x+4=0.
10x^{2}-6+14x^{2}=10x+50
Add 14x^{2} to both sides.
24x^{2}-6=10x+50
Combine 10x^{2} and 14x^{2} to get 24x^{2}.
24x^{2}-6-10x=50
Subtract 10x from both sides.
24x^{2}-6-10x-50=0
Subtract 50 from both sides.
24x^{2}-56-10x=0
Subtract 50 from -6 to get -56.
24x^{2}-10x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24\left(-56\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -10 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24\left(-56\right)}}{2\times 24}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-96\left(-56\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-10\right)±\sqrt{100+5376}}{2\times 24}
Multiply -96 times -56.
x=\frac{-\left(-10\right)±\sqrt{5476}}{2\times 24}
Add 100 to 5376.
x=\frac{-\left(-10\right)±74}{2\times 24}
Take the square root of 5476.
x=\frac{10±74}{2\times 24}
The opposite of -10 is 10.
x=\frac{10±74}{48}
Multiply 2 times 24.
x=\frac{84}{48}
Now solve the equation x=\frac{10±74}{48} when ± is plus. Add 10 to 74.
x=\frac{7}{4}
Reduce the fraction \frac{84}{48} to lowest terms by extracting and canceling out 12.
x=-\frac{64}{48}
Now solve the equation x=\frac{10±74}{48} when ± is minus. Subtract 74 from 10.
x=-\frac{4}{3}
Reduce the fraction \frac{-64}{48} to lowest terms by extracting and canceling out 16.
x=\frac{7}{4} x=-\frac{4}{3}
The equation is now solved.
10x^{2}-6+14x^{2}=10x+50
Add 14x^{2} to both sides.
24x^{2}-6=10x+50
Combine 10x^{2} and 14x^{2} to get 24x^{2}.
24x^{2}-6-10x=50
Subtract 10x from both sides.
24x^{2}-10x=50+6
Add 6 to both sides.
24x^{2}-10x=56
Add 50 and 6 to get 56.
\frac{24x^{2}-10x}{24}=\frac{56}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{10}{24}\right)x=\frac{56}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{5}{12}x=\frac{56}{24}
Reduce the fraction \frac{-10}{24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{12}x=\frac{7}{3}
Reduce the fraction \frac{56}{24} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=\frac{7}{3}+\left(-\frac{5}{24}\right)^{2}
Divide -\frac{5}{12}, the coefficient of the x term, by 2 to get -\frac{5}{24}. Then add the square of -\frac{5}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{7}{3}+\frac{25}{576}
Square -\frac{5}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{1369}{576}
Add \frac{7}{3} to \frac{25}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{24}\right)^{2}=\frac{1369}{576}
Factor x^{2}-\frac{5}{12}x+\frac{25}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{\frac{1369}{576}}
Take the square root of both sides of the equation.
x-\frac{5}{24}=\frac{37}{24} x-\frac{5}{24}=-\frac{37}{24}
Simplify.
x=\frac{7}{4} x=-\frac{4}{3}
Add \frac{5}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}