Factor
\left(x-5\right)\left(10x-1\right)
Evaluate
\left(x-5\right)\left(10x-1\right)
Graph
Share
Copied to clipboard
10x^{2}-51x+5
Multiply and combine like terms.
a+b=-51 ab=10\times 5=50
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-50 -2,-25 -5,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 50.
-1-50=-51 -2-25=-27 -5-10=-15
Calculate the sum for each pair.
a=-50 b=-1
The solution is the pair that gives sum -51.
\left(10x^{2}-50x\right)+\left(-x+5\right)
Rewrite 10x^{2}-51x+5 as \left(10x^{2}-50x\right)+\left(-x+5\right).
10x\left(x-5\right)-\left(x-5\right)
Factor out 10x in the first and -1 in the second group.
\left(x-5\right)\left(10x-1\right)
Factor out common term x-5 by using distributive property.
10x^{2}-51x+5
Combine -50x and -x to get -51x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}