Solve for x
x = \frac{\sqrt{14} + 2}{5} \approx 1.148331477
x=\frac{2-\sqrt{14}}{5}\approx -0.348331477
Graph
Share
Copied to clipboard
10x^{2}-5x-4=3x
Add -5 and 1 to get -4.
10x^{2}-5x-4-3x=0
Subtract 3x from both sides.
10x^{2}-8x-4=0
Combine -5x and -3x to get -8x.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 10\left(-4\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 10\left(-4\right)}}{2\times 10}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-40\left(-4\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-8\right)±\sqrt{64+160}}{2\times 10}
Multiply -40 times -4.
x=\frac{-\left(-8\right)±\sqrt{224}}{2\times 10}
Add 64 to 160.
x=\frac{-\left(-8\right)±4\sqrt{14}}{2\times 10}
Take the square root of 224.
x=\frac{8±4\sqrt{14}}{2\times 10}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{14}}{20}
Multiply 2 times 10.
x=\frac{4\sqrt{14}+8}{20}
Now solve the equation x=\frac{8±4\sqrt{14}}{20} when ± is plus. Add 8 to 4\sqrt{14}.
x=\frac{\sqrt{14}+2}{5}
Divide 8+4\sqrt{14} by 20.
x=\frac{8-4\sqrt{14}}{20}
Now solve the equation x=\frac{8±4\sqrt{14}}{20} when ± is minus. Subtract 4\sqrt{14} from 8.
x=\frac{2-\sqrt{14}}{5}
Divide 8-4\sqrt{14} by 20.
x=\frac{\sqrt{14}+2}{5} x=\frac{2-\sqrt{14}}{5}
The equation is now solved.
10x^{2}-5x-4=3x
Add -5 and 1 to get -4.
10x^{2}-5x-4-3x=0
Subtract 3x from both sides.
10x^{2}-8x-4=0
Combine -5x and -3x to get -8x.
10x^{2}-8x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{10x^{2}-8x}{10}=\frac{4}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{8}{10}\right)x=\frac{4}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{4}{5}x=\frac{4}{10}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{5}x=\frac{2}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{2}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{2}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{14}{25}
Add \frac{2}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=\frac{14}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{14}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{\sqrt{14}}{5} x-\frac{2}{5}=-\frac{\sqrt{14}}{5}
Simplify.
x=\frac{\sqrt{14}+2}{5} x=\frac{2-\sqrt{14}}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}