Solve for x
x=\frac{2}{5}=0.4
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
10x^{2}-49x+18=0
Add 18 to both sides.
a+b=-49 ab=10\times 18=180
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 10x^{2}+ax+bx+18. To find a and b, set up a system to be solved.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 180.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
Calculate the sum for each pair.
a=-45 b=-4
The solution is the pair that gives sum -49.
\left(10x^{2}-45x\right)+\left(-4x+18\right)
Rewrite 10x^{2}-49x+18 as \left(10x^{2}-45x\right)+\left(-4x+18\right).
5x\left(2x-9\right)-2\left(2x-9\right)
Factor out 5x in the first and -2 in the second group.
\left(2x-9\right)\left(5x-2\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=\frac{2}{5}
To find equation solutions, solve 2x-9=0 and 5x-2=0.
10x^{2}-49x=-18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10x^{2}-49x-\left(-18\right)=-18-\left(-18\right)
Add 18 to both sides of the equation.
10x^{2}-49x-\left(-18\right)=0
Subtracting -18 from itself leaves 0.
10x^{2}-49x+18=0
Subtract -18 from 0.
x=\frac{-\left(-49\right)±\sqrt{\left(-49\right)^{2}-4\times 10\times 18}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -49 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-49\right)±\sqrt{2401-4\times 10\times 18}}{2\times 10}
Square -49.
x=\frac{-\left(-49\right)±\sqrt{2401-40\times 18}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-49\right)±\sqrt{2401-720}}{2\times 10}
Multiply -40 times 18.
x=\frac{-\left(-49\right)±\sqrt{1681}}{2\times 10}
Add 2401 to -720.
x=\frac{-\left(-49\right)±41}{2\times 10}
Take the square root of 1681.
x=\frac{49±41}{2\times 10}
The opposite of -49 is 49.
x=\frac{49±41}{20}
Multiply 2 times 10.
x=\frac{90}{20}
Now solve the equation x=\frac{49±41}{20} when ± is plus. Add 49 to 41.
x=\frac{9}{2}
Reduce the fraction \frac{90}{20} to lowest terms by extracting and canceling out 10.
x=\frac{8}{20}
Now solve the equation x=\frac{49±41}{20} when ± is minus. Subtract 41 from 49.
x=\frac{2}{5}
Reduce the fraction \frac{8}{20} to lowest terms by extracting and canceling out 4.
x=\frac{9}{2} x=\frac{2}{5}
The equation is now solved.
10x^{2}-49x=-18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-49x}{10}=-\frac{18}{10}
Divide both sides by 10.
x^{2}-\frac{49}{10}x=-\frac{18}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{49}{10}x=-\frac{9}{5}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{49}{10}x+\left(-\frac{49}{20}\right)^{2}=-\frac{9}{5}+\left(-\frac{49}{20}\right)^{2}
Divide -\frac{49}{10}, the coefficient of the x term, by 2 to get -\frac{49}{20}. Then add the square of -\frac{49}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{49}{10}x+\frac{2401}{400}=-\frac{9}{5}+\frac{2401}{400}
Square -\frac{49}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{49}{10}x+\frac{2401}{400}=\frac{1681}{400}
Add -\frac{9}{5} to \frac{2401}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{49}{20}\right)^{2}=\frac{1681}{400}
Factor x^{2}-\frac{49}{10}x+\frac{2401}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{20}\right)^{2}}=\sqrt{\frac{1681}{400}}
Take the square root of both sides of the equation.
x-\frac{49}{20}=\frac{41}{20} x-\frac{49}{20}=-\frac{41}{20}
Simplify.
x=\frac{9}{2} x=\frac{2}{5}
Add \frac{49}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}